Advertisement

Isolation of immunoresistant human glioma cell clones after selection with alloreactive cytotoxic T lymphocytes: cytogenetic and molecular cytogenetic characterization

      Abstract

      Intratumoral heterogeneity and genetic instability within gliomas may allow intrinsically immunoresistant (IR) cells to escape alloreactive cytotoxic T lymphocyte (aCTL) cellular immunotherapy. The potential existence of aCTL-resistant variants prompted us to investigate whether cellular immunotherapy resistant glioma models could be isolated. To generate the models, repeated intermittent or continuous selective pressure (ISP or CSP) with multiple aCTL populations was applied to a low-passage glioblastoma cell explant, 13-06-MG, obtained from a patient at initial diagnosis. IL-6 and IL-8 secretion was greater in coincubates of aCTL cells with 13-06-ISP and 13-06-CSP immunoselected cells than those with 13-06-MG parental cells. Initially, the immunoselected cells were less sensitive to aCTL lysis; however, the reduced aCTL-sensitivity was not maintained upon further selection. We therefore isolated IR clones from continuously immunoselected cells (13-06-CSP). The frequency of IR clones was 1–6 cells per 10,000 immunoselected cells. Two clones selected for further study, 13-06-IR29 and 13-06-IR30, resisted aCTL lysis in the absence of immunoselective pressure. Cytogenetic analyses revealed structural anomalies and genomic imbalances unique to the IR clones. Based on these findings, a hypothetical model is proposed that traces the origin of the IR clones to a clonal variant within the 13-06-CSP and 13-06-MG populations.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Central Brain Tumor Registry of the United States (CBTRUS). Statistical report: primary brain tumors in the United States, 1995–1999. CBTRUS, 2002 [Available at: http://www.cbtrus.org/reports/reports.html].

        • Stupp R.
        • Mason W.P.
        • van den Bent M.J.
        • Weller M.
        • Fisher B.
        • Taphoorn M.J.
        • Belanger K.
        • Brandes A.A.
        • Marosi C.
        • Bogdahn U.
        • Curschmann J.
        • Janzer R.C.
        • Ludwin S.K.
        • Gorlia T.
        • Allgeier A.
        • Lacombe D.
        • Cairncross J.G.
        • Eisenhauer E.
        • Mirimanoff R.O.
        • European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups
        National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
        N Engl J Med. 2005; 352: 987-996
        • Prados M.D.
        • Berger M.S.
        • Wilson C.B.
        Primary central nervous system tumors: advances in knowledge and treatment.
        CA Cancer J Clin. 1998; 48: 331-360
        • Laws Jr., E.R.
        • Thapar K.
        Brain tumors.
        CA Cancer J Clin. 1993; 43: 263-271
        • Virasch N.
        • Kruse C.A.
        Strategies using the immune system for therapy of brain tumors.
        Hematol Oncol Clin No Am. 2001; 15: 1053-1071
        • Paul D.B.
        • Kruse C.A.
        Immunologic approaches to therapy for brain tumors.
        Curr Neurol Neurosci Rep. 2001; 1: 238-244
        • Kruse C.A.
        • Rubinstein D.
        Cytotoxic T-lymphocytes reactive to patient major histocompatibility complex proteins for therapy of brain tumors.
        in: Liau L.M. Becker D.P. Cloughesy T.F. Bigner D.D. Brain tumor immunotherapy. Humana Press, Totowa, NJ2001: 149-170
        • Kruse C.A.
        • Cepeda L.
        • Owens B.
        • Johnson S.D.
        • Stears J.
        • Lillehei K.O.
        Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2.
        Cancer Immunol Immunother. 1997; 45: 77-87
        • Restifo N.P.
        • Marincola F.M.
        • Kawakami Y.
        • Taubenberger J.
        • Yannelli J.R.
        • Rosenberg S.A.
        Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy.
        J Natl Cancer Inst. 1996; 88: 100-108
        • Rosenberg S.A.
        • Yang J.C.
        • Robbins P.F.
        • Wunderlich J.R.
        • Hwu P.
        • Sherry R.M.
        • Schwartzentruber D.J.
        • Topalian S.L.
        • Restifo N.P.
        • Filie A.
        • Chang R.
        • Dudley M.E.
        Cell transfer therapy for cancer: lessons from sequential treatments of a patient with metastatic melanoma.
        J Immunother. 2003; 26: 385-393
        • Topalian S.L.
        • Kasid A.
        • Rosenberg S.A.
        Immunoselection of a human melanoma resistant to specific lysis by autologous tumor-infiltrating lymphocytes: possible mechanisms for immunotherapeutic failures.
        J Immunol. 1990; 144: 4487-4495
        • Papadopoulos A.J.
        • Han X.
        • Matossian-Rogers A.
        • Raju K.S.
        Induction of immunocellular resistance to IL-2-activated lymphocytes within ovarian carcinoma cells.
        Gyn Oncol. 1995; 57: 388-394
        • Rivoltini L.
        • Gambacorti-Passerini C.
        • Supino R.
        • Parmiani G.
        Generation and partial characterization of melanoma sublines resistant to lymphokine activated killer (LAK) cells: relevance to doxorubicin resistance.
        Int J Cancer. 1989; 43: 880-885
        • Ruiz-Cabello F.
        • Cabrera T.
        • Lopez-Nevot M.A.
        • Garrido F.
        Impaired surface antigen presentation in tumors: implications for T cell-based immunotherapy.
        Semin Cancer Biol. 2002; 12: 15-24
        • Mukherjee P.
        • Madsen C.S.
        • Ginardi A.R.
        • Tinder T.L.
        • Jacobs F.
        • Parker J.
        • Agrawal B.
        • Longenecker B.M.
        • Gendler S.J.
        Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer.
        J Immunother. 2003; 26: 47-62
        • Slingluff Jr., C.L.
        • Colella T.A.
        • Thompson L.
        • Graham D.D.
        • Skipper J.C.
        • Caldwell J.
        • Brinckerhoff L.
        • Kittlesen D.J.
        • Deacon D.H.
        • Oei C.
        • Harthun N.L.
        • Huczko E.L.
        • Hunt D.F.
        • Darrow T.L.
        • Engelhard V.H.
        Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens.
        Cancer Immunol Immunother. 2000; 48: 661-672
        • Fiore E.
        • Fusco C.
        • Romero P.
        • Stamenkovic I.
        Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity.
        Oncogene. 2002; 21: 5213-5223
        • Walker P.R.
        • Saas P.
        • Dietrich P.Y.
        Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back.
        J Immunol. 1997; 158: 4521-4524
        • Gastman B.R.
        • Atarashi Y.
        • Reichert T.E.
        • Saito T.
        • Balkir L.
        • Rabinowich H.
        • Whiteside T.L.
        Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes.
        Cancer Res. 1999; 59: 5356-5364
        • Baxevanis C.N.
        • Reclos G.J.
        • Gritzapis A.D.
        • Dedousis G.V.
        • Missitzis I.
        • Papamichail M.
        Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer.
        Cancer. 1993; 72: 491-501
        • Fakhrai H.
        • Dorigo O.
        • Shawler D.L.
        • Lin H.
        • Mercola D.
        • Black K.L.
        • Royston I.
        • Sobol R.E.
        Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy.
        Proc Natl Acad Sci U S A. 1996; 93: 2909-2914
        • Pitti R.M.
        • Marsters S.A.
        • Lawrence D.A.
        • Roy M.
        • Kischkel F.C.
        • Dowd P.
        • Huang A.
        • Donahue C.J.
        • Sherwood S.W.
        • Baldwin D.T.
        • Godowski P.J.
        • Wood W.I.
        • Gurney A.L.
        • Hillan K.J.
        • Cohen R.L.
        • Goddard A.D.
        • Botstein D.
        • Ashkenazi A.
        Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer.
        Nature. 1998; 396: 699-703
        • Kamarajan P.
        • Sun N.K.
        • Chao C.C.
        Up-regulation of FLIP in cisplatin-selected HeLa cells causes cross-resistance to CD95/Fas death signalling.
        Biochem J. 2003; 376: 253-260
        • Medema J.P.
        • de Jong J.
        • van Hall T.
        • Melief C.J.
        • Offringa R.
        Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein.
        J Exp Med. 1999; 190: 1033-1038
        • Medema J.P.
        • de Jong J.
        • Peltenburg L.T.C.
        • Verdegaal E.M.
        • Gorter A.
        • Bres S.A.
        • Franken K.L.
        • Hahne M.
        • Albar J.P.
        • Melief C.J.
        • Offringa R.
        Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors.
        Proc Natl Acad Sci U S A. 2001; 98: 11515-11520
        • Gomez G.G.
        • Kruse C.A.
        Isolation and culture of human brain tumor cells.
        Methods Mol Med. 2004; 88: 101-109
        • Hessling J.J.
        • Miller S.E.
        • Levy N.L.
        A direct comparison of procedures for the detection of mycoplasma in tissue culture.
        J Immunol Methods. 1980; 38: 315-324
        • Kruse C.A.
        • Mitchell D.H.
        • Kleinschmidt-DeMasters B.K.
        • Franklin W.A.
        • Morse H.G.
        • Spector E.B.
        • Lillehei K.O.
        Characterization of a continuous human glioma cell line DBTRG-05MG: growth kinetics, karyotype, receptor expression, and tumor suppressor gene analyses.
        In Vitro Cell Dev Biol. 1992; 28A: 609-614
        • Kruse C.A.
        • Beck L.T.
        Artificial-capillary-system development of human alloreactive cytotoxic T-lymphocytes that lyse brain tumours.
        Biotechnol Appl Biochem. 1997; 25: 197-205
        • Carson R.T.
        • Vignali D.A.A.
        Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay.
        J Immunol Methods. 1999; 227: 41-52
        • Gomez G.G.
        • Read S.B.
        • Gerschenson L.E.
        • Santoli D.
        • Zweifach A.
        • Kruse C.A.
        Interactions of the allogeneic effector leukemic T cell line, TALL-104, with human malignant brain tumors.
        Neuro-Oncol. 2004; 6: 83-95
        • van Bokhoven A.
        • Caires A.
        • Maria M.D.
        • Schulte A.P.
        • Lucia M.S.
        • Nordeen S.K.
        • Miller G.J.
        • Varella-Garcia M.
        Spectral karyotype (SKY) analysis of human prostate carcinoma cell lines.
        Prostate. 2003; 57: 226-244
      2. ISCN 1995: an international system for human cytogenetic nomenclature (1995).
        in: Mitelman F. S. Karger, Basel1995
        • Kruse C.A.
        • Varella-Garcia M.
        • Kleinschmidt-Demasters B.K.
        • Owens G.C.
        • Spector E.B.
        • Fakhrai H.
        • Savelieva E.
        • Liang B.C.
        Receptor expression, cytogenetic, and molecular analysis of six continuous human glioma cell lines.
        In Vitro Cell Dev Biol Anim. 1998; 34: 455-462
        • Bakir A.
        • Gezen F.
        • Yildiz O.
        • Ayhan A.
        • Kahraman S.
        • Kruse C.A.
        • Varella-Garcia M.
        • Yildiz F.
        • Kubar A.
        Establishment and characterization of a human glioblastoma multiforme cell line.
        Cancer Genet Cytogenet. 1998; 103: 46-51
        • Gjerset R.A.
        • Fakhrai H.
        • Shawler D.L.
        • Turla S.
        • Dorigo O.
        • Grover-Bardwick A.
        • Mercola D.
        • Wen S.F.
        • Collins H.
        • Lin H.
        • Varella-Garcia M.
        • Kruse C.A.
        • Royston I.
        • Sobol R.E.
        Characterization of a new human glioblastoma cell line that expresses mutant p53 and lacks activation of the PDGF pathway.
        In Vitro Cell Dev Biol Anim. 1995; 31: 207-214
        • Van Meir E.
        • Sawamura Y.
        • Diserens A.C.
        • Hamou M.F.
        • de Tribolet N.
        Human glioblastoma cells release interleukin 6 in vivo and in vitro.
        Cancer Res. 1990; 50: 6683-6688
        • Brat D.J.
        • Bellail A.C.
        • Van Meir E.G.
        The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis.
        Neuro-oncol. 2005; 7: 122-133
        • Sawyer J.R.
        • Swanson C.M.
        • Chadduck W.M.
        • Roloson G.J.
        Evolution of tumor chromosome abnormalities after therapy in a pediatric astrocytoma.
        Cancer Genet Cytogenet. 1991; 53: 119-123
        • Lai Y.S.
        • Ramsay D.A.
        • Macdonald D.R.
        • Del Maestro R.F.
        Therapy-related chromosomal changes and cytogenetic heterogeneity in human gliomas.
        J Neurooncol. 1997; 32: 7-17
        • Gomez G.G.
        • Kruse C.A.
        Cytogenetic and DNA microarray analysis of human glioma cell models resistant to alloreactive cytotoxic T lymphocytes.
        Proc Am Assoc Cancer Res. 2005; 46 (abst 4254)
        • Hofer-Warbinek R.
        • Schmid J.A.
        • Mayer H.
        • Winsauer G.
        • Orel L.
        • Mueller B.
        • Wiesner Ch.
        • Binder B.R.
        • de Martin R.
        A highly conserved proapoptotic gene, IKIP, located next to the APAF1 gene locus, is regulated by p53.
        Cell Death Differ. 2004; 11: 1317-1325
        • Fujimoto A.
        • Takeuchi H.
        • Taback B.
        • Hsueh E.C.
        • Elashoff D.
        • Morton D.L.
        • Hoon D.S.
        Allelic imbalance of 12q22-23 associated with APAF-1 locus correlates with poor disease outcome in cutaneous melanoma.
        Cancer Res. 2004; 64: 2245-2250