Advertisement
Lead article| Volume 164, ISSUE 2, P97-109, January 15, 2006

Distribution of breakpoints on chromosome 18 in breast, colorectal, and pancreatic carcinoma cell lines

  • Author Footnotes
    1 Current address: Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 2601, Australia.
    Amber E. Alsop
    Footnotes
    1 Current address: Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 2601, Australia.
    Affiliations
    Cancer Genomics Program, Hutchison-MRC Research Centre, Departments of Pathology and Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
    Search for articles by this author
  • Andrew E. Teschendorff
    Affiliations
    Cancer Genomics Program, Hutchison-MRC Research Centre, Departments of Pathology and Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
    Search for articles by this author
  • Paul A.W. Edwards
    Correspondence
    Corresponding author. Tel.: +44-(0)-1223-763338; fax: +44-(0)-1223-763241.
    Affiliations
    Cancer Genomics Program, Hutchison-MRC Research Centre, Departments of Pathology and Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
    Search for articles by this author
  • Author Footnotes
    1 Current address: Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 2601, Australia.

      Abstract

      Chromosome 18 is frequently rearranged in carcinomas. We explored the distribution of breakpoints affecting chromosome 18 by mapping 56 breakpoints in 26 carcinoma cell lines by fluorescence in situ hybridization (FISH) using bacterial artificial chromosomes (BACs) and band paints. The distribution of breaks among 18 intervals of chromosome 18 was significantly nonrandom. The interval spanning the centromere contained the greatest number of breaks and had the highest average copy number of any interval. There was a high density of breaks close to the centromere as well as actually within the centromere. A cluster of breaks encompassing SMAD4 was associated with the minimum average copy number, consistent with SMAD4 being a tumor suppressor gene. There may be another cluster of breaks around 18q12. We offer two interpretations of the concentration of breaks near the centromere. It may reflect selection for an oncogene near the centromere, or there may be an underlying bias of breakage toward the centromere. We show that the latter is predicted by a simple model that invokes random breakage following anchorage of some random point on the chromosome, or selection of breaks proximal to one of several tumor suppressor genes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hahn S.A.
        • Seymour A.B.
        • Hoque A.T.
        • Schutte M.
        • da Costa L.T.
        • Redston M.S.
        • Caldas C.
        • Weinstein C.L.
        • Fischer A.
        • Yeo C.J.
        Allelotype of pancreatic adenocarcinoma using xenograft enrichment.
        Cancer Res. 1995; 55: 4670-4675
        • Dutrillaux B.
        Pathways of chromosome alteration in human epithelial cancers.
        Adv Cancer Res. 1995; 67: 59-82
        • Forozan F.
        • Mahlamaki E.H.
        • Monni O.
        • Chen Y.
        • Veldman R.
        • Jiang Y.
        • Gooden G.C.
        • Ethier S.P.
        • Kallioniemi A.
        • Kallioniemi O.P.
        Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.
        Cancer Res. 2000; 60: 4519-4525
        • Tognon C.
        • Knezevich S.R.
        • Huntsman D.
        • Roskelley C.D.
        • Melnyk N.
        • Mathers J.A.
        • Becker L.
        • Carneiro F.
        • MacPherson N.
        • Horsman D.
        • Poremba C.
        • Sorensen P.H.
        Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma.
        Cancer Cell. 2002; 2: 367-376
        • Huang H.E.
        • Chin S.F.
        • Ginestier C.
        • Bardou V.J.
        • Adelaide J.
        • Iyer N.G.
        • Garcia M.J.
        • Pole J.C.
        • Callagy G.M.
        • Hewitt S.M.
        • Gullick W.J.
        • Jacquemier J.
        • Caldas C.
        • Chaffanet M.
        • Birnbaum D.
        • Edwards P.A.
        A recurrent chromosome breakpoint in breast cancer at the NRG1/neuregulin 1/heregulin gene.
        Cancer Res. 2004; 64: 6840-6844
        • Mitelman F.
        • Johansson B.
        • Mertens F.
        Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer.
        Nat Genet. 2004; 36: 331-334
        • Tonon G.
        • Modi S.
        • Wu L.
        • Kubo A.
        • Coxon A.B.
        • Komiya T.
        • O'Neil K.
        • Stover K.
        • El-Naggar A.
        • Griffin J.D.
        • Kirsch I.R.
        • Kaye F.J.
        t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway.
        Nat Genet. 2003; 33: 208-213
        • Mertens F.
        • Johansson B.
        • Hoglund M.
        • Mitelman F.
        Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms.
        Cancer Res. 1997; 57: 2765-2780
        • Thiagalingam S.
        • Laken S.
        • Willson J.K.
        • Markowitz S.D.
        • Kinzler K.W.
        • Vogelstein B.
        • Lengauer C.
        Mechanisms underlying losses of heterozygosity in human colorectal cancers.
        Proc Natl Acad Sci U S A. 2001; 98: 2698-2702
        • Griffin C.A.
        • Hruban R.H.
        • Morsberger L.A.
        • Ellingham T.
        • Long P.P.
        • Jaffee E.M.
        • Hauda K.M.
        • Bohlander S.K.
        • Yeo C.J.
        Consistent chromosome abnormalities in adenocarcinoma of the pancreas.
        Cancer Res. 1995; 55: 2394-2399
        • Mahlamaki E.H.
        • Hoglund M.
        • Gorunova L.
        • Karhu R.
        • Dawiskiba S.
        • Andren-Sandberg A.
        • Kallioniemi O.P.
        • Johansson B.
        Comparative genomic hybridization reveals frequent gains of 20q, 8q, 11q, 12p, and 17q, and losses of 18q, 9p, and 15q in pancreatic cancer.
        Genes Chromosomes Cancer. 1997; 20: 383-391
        • Schleger C.
        • Arens N.
        • Zentgraf H.
        • Bleyl U.
        • Verbeke C.
        Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH).
        J Pathol. 2000; 191: 27-32
        • Ghadimi B.M.
        • Schröck E.
        • Walker R.L.
        • Wangsa D.
        • Jauho A.
        • Meltzer P.S.
        • Ried T.
        Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.
        Am J Pathol. 1999; 154: 525-536
        • Hoglund M.
        • Gorunova L.
        • Jonson T.
        • Dawiskiba S.
        • Andren-Sandberg A.
        • Stenman G.
        • Johansson B.
        Cytogenetic and FISH analyses of pancreatic carcinoma reveal breaks in 18q11 with consistent loss of 18q12-qter and frequent gain of 18p.
        Br J Cancer. 1998; 77: 1893-1899
        • Gorunova L.
        • Hoglund M.
        • Andren-Sandberg A.
        • Dawiskiba S.
        • Jin Y.
        • Mitelman F.
        • Johansson B.
        Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations.
        Genes Chromosomes Cancer. 1998; 23: 81-99
        • Hahn S.A.
        • Schutte M.
        • Hoque A.T.
        • Moskaluk C.A.
        • da Costa L.T.
        • Rozenblum E.
        • Weinstein C.L.
        • Fischer A.
        • Yeo C.J.
        • Hruban R.H.
        • Kern S.E.
        DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
        Science. 1996; 271: 350-353
        • Thiagalingam S.
        • Lengauer C.
        • Leach F.S.
        • Schutte M.
        • Hahn S.A.
        • Overhauser J.
        • Willson J.K.
        • Markowitz S.
        • Hamilton S.R.
        • Kern S.E.
        • Kinzler K.W.
        • Vogelstein B.
        Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers.
        Nat Genet. 1996; 13: 343-346
        • Woodford-Richens K.L.
        • Rowan A.J.
        • Gorman P.
        • Halford S.
        • Bicknell D.C.
        • Wasan H.S.
        • Roylance R.R.
        • Bodmer W.F.
        • Tomlinson I.P.
        SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway.
        Proc Natl Acad Sci U S A. 2001; 98: 9719-9723
        • Riggins G.J.
        • Thiagalingam S.
        • Rozenblum E.
        • Weinstein C.L.
        • Kern S.E.
        • Hamilton S.R.
        • Willson J.K.
        • Markowitz S.D.
        • Kinzler K.W.
        • Vogelstein B.
        Mad-related genes in the human.
        Nat Genet. 1996; 13: 347-349
        • Schutte M.
        • Hruban R.H.
        • Hedrick L.
        • Cho K.R.
        • Nadasdy G.M.
        • Weinstein C.L.
        • Bova G.S.
        • Isaacs W.B.
        • Cairns P.
        • Nawroz H.
        • Sidransky D.
        • Casero Jr., R.A.
        • Meltzer P.S.
        • Hahn S.A.
        • Kern S.E.
        DPC4 gene in various tumor types.
        Cancer Res. 1996; 56: 2527-2530
        • Clark J.
        • Rocques P.J.
        • Crew A.J.
        • Gill S.
        • Shipley J.
        • Chan A.M.
        • Gusterson B.A.
        • Cooper C.S.
        Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma.
        Nat Genet. 1994; 7: 502-508
        • Teixeira M.R.
        • Pandis N.
        • Heim S.
        Cytogenetic clues to breast carcinogenesis.
        Genes Chromosomes Cancer. 2002; 33: 1-16
        • Abdel-Rahman W.M.
        • Katsura K.
        • Rens W.
        • Gorman P.A.
        • Sheer D.
        • Bicknell D.
        • Bodmer W.F.
        • Arends M.J.
        • Wyllie A.H.
        • Edwards P.A.
        Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.
        Proc Natl Acad Sci U S A. 2001; 98: 2538-2543
        • Davidson J.M.
        • Gorringe K.L.
        • Chin S.F.
        • Orsetti B.
        • Besret C.
        • Courtay-Cahen C.
        • Roberts I.
        • Theillet C.
        • Caldas C.
        • Edwards P.A.
        Molecular cytogenetic analysis of breast cancer cell lines.
        Br J Cancer. 2000; 83: 1309-1317
        • Sirivatanauksorn V.
        • Sirivatanauksorn Y.
        • Gorman P.A.
        • Davidson J.M.
        • Sheer D.
        • Moore P.S.
        • Scarpa A.
        • Edwards P.A.
        • Lemoine N.R.
        Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.
        Int J Cancer. 2001; 91: 350-358
        • Moore P.S.
        • Sipos B.
        • Orlandini S.
        • Sorio C.
        • Real F.X.
        • Lemoine N.R.
        • Gress T.
        • Bassi C.
        • Kloppel G.
        • Kalthoff H.
        • Ungefroren H.
        • Lohr M.
        • Scarpa A.
        Genetic profile of 22 pancreatic carcinoma cell lines: analysis of K-ras, p53, p16, and DPC4/Smad4.
        Virchows Arch. 2001; 439: 798-802
        • Ellison G.
        • Klinowska T.
        • Westwood R.F.
        • Docter E.
        • French T.
        • Fox J.C.
        Further evidence to support the melanocytic origin of MDA-MB-435.
        Mol Pathol. 2002; 55: 294-299
        • Telenius H.
        • Pelmear A.H.
        • Tunnacliffe A.
        • Carter N.P.
        • Behmel A.
        • Ferguson-Smith M.A.
        • Nordenskjold M.
        • Pfragner R.
        • Ponder B.A.
        Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes.
        Genes Chromosomes Cancer. 1992; 4: 257-263
        • Nadeau J.H.
        • Taylor B.A.
        Lengths of chromosomal segments conserved since divergence of man and mouse.
        Proc Natl Acad Sci U S A. 1984; 81: 814-818
        • Sankoff D.
        • Deneault M.
        • Turbis P.
        • Allen C.
        Chromosomal distributions of breakpoints in cancer, infertility, and evolution.
        Theor Popul Biol. 2002; 61: 497-501
        • Taetle R.
        • Aickin M.
        • Yang J.M.
        • Panda L.
        • Emerson J.
        • Roe D.
        • Adair L.
        • Thompson F.
        • Liu Y.
        • Wisner L.
        • Davis J.R.
        • Trent J.
        • Alberts D.S.
        Chromosome abnormalities in ovarian adenocarcinoma: I. Nonrandom chromosome abnormalities from 244 cases.
        Genes Chromosomes Cancer. 1999; 25: 290-300
        • Jin Y.
        • Jin C.
        • Salemark L.
        • Martins C.
        • Wennerberg J.
        • Mertens F.
        Centromere cleavage is a mechanism underlying isochromosome formation in skin and head and neck carcinomas.
        Chromosoma. 2000; 109: 476-481
        • Jin Y.
        • Jin C.
        • Wennerberg J.
        • Hoglund M.
        • Mertens F.
        Cytogenetic and fluorescence in situ hybridization characterization of chromosome 8 rearrangements in head and neck squamous cell carcinomas.
        Cancer Genet Cytogenet. 2001; 130: 111-117
        • Hermsen M.
        • Snijders A.
        • Guervos M.A.
        • Taenzer S.
        • Koerner U.
        • Baak J.
        • Pinkel D.
        • Albertson D.
        • van Diest P.
        • Meijer G.
        • Schröck E.
        Centromeric chromosomal translocations show tissue-specific differences between squamous cell carcinomas and adenocarcinomas.
        Oncogene. 2005; 24: 1571-1579
        • Padilla-Nash H.M.
        • Heselmeyer-Haddad K.
        • Wangsa D.
        • Zhang H.
        • Ghadimi B.M.
        • Macville M.
        • Augustus M.
        • Schröck E.
        • Hilgenfeld E.
        • Ried T.
        Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms.
        Genes Chromosomes Cancer. 2001; 30: 349-363
        • McClintock B.
        The behavior in successive nuclear division of a chromosome broken at meiosis.
        Proc Natl Acad Sci U S A. 1939; 25: 405-416
        • McClintock B.
        The fusion of broken ends of chromosomes following nuclear fusion.
        Proc Natl Acad Sci U S A. 1942; 28: 458-463
        • Gisselsson D.
        • Jonson T.
        • Petersen A.
        • Strombeck B.
        • Dal Cin P.
        • Hoglund M.
        • Mitelman F.
        • Mertens F.
        • Mandahl N.
        Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors.
        Proc Natl Acad Sci U S A. 2001; 98: 12683-12688
        • Gisselsson D.
        • Pettersson L.
        • Hoglund M.
        • Heidenblad M.
        • Gorunova L.
        • Wiegant J.
        • Mertens F.
        • Dal Cin P.
        • Mitelman F.
        • Mandahl N.
        Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity.
        Proc Natl Acad Sci U S A. 2000; 97: 5357-5362
        • Riboni R.
        • Casati A.
        • Nardo T.
        • Zaccaro E.
        • Ferretti L.
        • Nuzzo F.
        • Mondello C.
        Telomeric fusions in cultured human fibroblasts as a source of genomic instability.
        Cancer Genet Cytogenet. 1997; 95: 130-136
        • Maser R.S.
        • DePinho R.A.
        Connecting chromosomes, crisis, and cancer.
        Science. 2002; 297: 565-569
        • Chevrier V.
        • Piel M.
        • Collomb N.
        • Saoudi Y.
        • Frank R.
        • Paintrand M.
        • Narumiya S.
        • Bornens M.
        • Job D.
        The Rho-associated protein kinase p160ROCK is required for centrosome positioning.
        J Cell Biol. 2002; 157: 807-817
        • Ishizaki T.
        • Maekawa M.
        • Fujisawa K.
        • Okawa K.
        • Iwamatsu A.
        • Fujita A.
        • Watanabe N.
        • Saito Y.
        • Kakizuka A.
        • Morii N.
        • Narumiya S.
        The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase.
        EMBO J. 1996; 15: 1885-1893
        • Kaneko K.
        • Satoh K.
        • Masamune A.
        • Satoh A.
        • Shimosegawa T.
        Expression of ROCK-1 in human pancreatic cancer: its down-regulation by morpholino oligo antisense can reduce the migration of pancreatic cancer cells in vitro.
        Pancreas. 2002; 24: 251-257
        • Hilgers W.
        • Song J.J.
        • Haye M.
        • Hruban R.R.
        • Kern S.E.
        • Fearon E.R.
        Homozygous deletions inactivate DCC, but not MADH4/DPC4/SMAD4, in a subset of pancreatic and biliary cancers.
        Genes Chromosomes Cancer. 2000; 27: 353-357
      1. Mitelman F, Johansson B, Mertens F, editors. Mitelman database of chromosome aberrations in cancer [Internet]. Updated May 2005. Available from http://cgap.nci.nih.gov/Chromosomes/Mitelman.

        • Soule H.D.
        • Vazguez J.
        • Long A.
        • Albert S.
        • Brennan M.
        A human cell line from a pleural effusion derived from a breast carcinoma.
        J Natl Cancer Inst. 1973; 51: 1409-1416
        • Cailleau R.
        • Olive M.
        • Cruciger Q.V.
        Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization.
        In Vitro. 1978; 14: 911-915
        • Young R.K.
        • Cailleau R.M.
        • Mackay B.
        • Reeves Jr., W.J.
        Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusion of human breast carcinoma.
        In Vitro. 1974; 9: 239-245
        • Satya-Prakash K.L.
        • Pathak S.
        • Hsu T.C.
        • Olive M.
        • Cailleau R.
        Cytogenetic analysis on eight human breast tumor cell lines: high frequencies of 1q, 11q and HeLa-like marker chromosomes.
        Cancer Genet Cytogenet. 1981; 3: 61-73
        • Whitehead R.H.
        • Bertoncello I.
        • Webber L.M.
        • Pedersen J.S.
        A new human breast carcinoma cell line (PMC42) with stem cell characteristics: I. Morphologic characterization.
        J Natl Cancer Inst. 1983; 70: 649-661
        • Fogh J.
        • Trempe G.
        New human tumor cell lines.
        in: Fogh J. Human tumor cells in vitro. Plenum Press, New York1975: 115-159
        • Keydar I.
        • Chen L.
        • Karby S.
        • Weiss F.R.
        • Delarea J.
        • Radu M.
        • Chaitcik S.
        • Brenner H.J.
        Establishment and characterization of a cell line of human breast carcinoma origin.
        Eur J Cancer. 1979; 15: 659-670
        • Browning M.J.
        • Krausa P.
        • Rowan A.
        • Bicknell D.C.
        • Bodmer J.G.
        • Bodmer W.F.
        Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.
        Proc Natl Acad Sci U S A. 1993; 90: 2842-2845
        • Kirkland S.C.
        Dome formation by a human colonic adenocarcinoma cell line (HCA-7).
        Cancer Res. 1985; 45: 3790-3795
        • Brattain M.G.
        • Fine W.D.
        • Khaled F.M.
        • Thompson J.
        • Brattain D.E.
        Heterogeneity of malignant cells from a human colonic carcinoma.
        Cancer Res. 1981; 41: 1751-1756
        • Suardet L.
        • Gaide A.C.
        • Calmes J.M.
        • Sordat B.
        • Givel J.C.
        • Eliason J.F.
        • Odartchenko N.
        Responsiveness of three newly established human colorectal cancer cell lines to transforming growth factors beta 1 and beta 2.
        Cancer Res. 1992; 52: 3705-3712
        • Leibovitz A.
        • Stinson J.C.
        • McCombs 3rd, W.B.
        • McCoy C.E.
        • Mazur K.C.
        • Mabry N.D.
        Classification of human colorectal adenocarcinoma cell lines.
        Cancer Res. 1976; 36: 4562-4569
        • Schoumacher R.A.
        • Ram J.
        • Iannuzzi M.C.
        • Bradbury N.A.
        • Wallace R.W.
        • Hon C.T.
        • Kelly D.R.
        • Schmid S.M.
        • Gelder F.B.
        • Rado T.A.
        • Frizzell R.A.
        A cystic fibrosis pancreatic adenocarcinoma cell line.
        Proc Natl Acad Sci U S A. 1990; 87: 4012-4016
        • Morgan R.T.
        • Woods L.K.
        • Moore G.E.
        • Quinn L.A.
        • McGavran L.
        • Gordon S.G.
        Human cell line (COLO 357) of metastatic pancreatic adenocarcinoma.
        Int J Cancer. 1980; 25: 591-598
        • Nagata N.
        • Akatsu T.
        • Kugai N.
        • Yasutomo Y.
        • Kinoshita T.
        • Kosano H.
        • Shimauchi T.
        • Takatani O.
        • Ueyama Y.
        The tumor cells (FA-6) established from a pancreatic cancer associated with humoral hypercalcemia of malignancy: a simultaneous production of parathyroid hormone-like activity and transforming growth factor activity.
        Endocrinol Jpn. 1989; 36: 75-85
        • Frazier M.L.
        • Pathak S.
        • Wang Z.W.
        • Cleary K.
        • Singletary S.E.
        • Olive M.
        • Mackay B.
        • Steck P.A.
        • Levin B.
        Establishment of a new human pancreatic adenocarcinoma cell line, MDAPanc-3.
        Pancreas. 1990; 5: 8-16
        • Lieber M.
        • Mazzetta J.
        • Nelson-Rees W.
        • Kaplan M.
        • Todaro G.
        Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas.
        Int J Cancer. 1975; 15: 741-747
        • Dexter D.L.
        • Matook G.M.
        • Meitner P.A.
        • Bogaars H.A.
        • Jolly G.A.
        • Turner M.D.
        • Calabresi P.
        Establishment and characterization of two human pancreatic cancer cell lines tumorigenic in athymic mice.
        Cancer Res. 1982; 42: 2705-2714
        • Iwamura T.
        • Katsuki T.
        • Ide K.
        Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9.
        Jpn J Cancer Res. 1987; 78: 54-62