Advertisement

Deletion mapping of chromosome region 12q13-24 in colorectal cancer

      Abstract

      Colorectal cancer is one of the most common cancers in the world. Colorectal cancer develops after a long and multistep process of carcinogenesis. Inactivation of tumor suppressor genes is among the most important steps in development of colorectal cancer. Analysis of loss of heterozygosity (LOH) is an effective method to determine the localization of tumor suppressor genes. In this study, we used five microsatellite markers to analyze the region 12q13-24 among 47 patients with colorectal cancer. The frequency of LOH and the clinicopathological data were compared using logistic regression and a chi-square test. In 34 of 47 tumor tissues (72%), LOH was detected at least in one marker. The highest LOH frequency was 34%, on the D12S129 locus; the lowest frequency was 23%, on the D12S78 locus. Loss of heterozygosity was detected as 32% on D12S83, 30% on D12S346, and 26% on D12S1660. No statistically significant correlation was found between the frequency of LOH and clinicopathological features (P > 0.05). Chromosome region 12q13-24 contains several known genes that may be candidate tumor suppressor genes, including RASAL1, ITGA7, STAB2, GLIPR1, and SLC5A8. Although the exact roles of these genes in colorectal cancer formation remain to be clarified, the present data point to a tumor suppressor role.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Souglakos J.
        Genetic alterations in sporadic and hereditary colorectal cancer: implementations for screening and follow-up.
        Dig Dis. 2007; 25: 9-19
        • Cetin E.
        • Cengiz B.
        • Gunduz E.
        • Gunduz M.
        • Nagatsuka H.
        • Beder-Beder L.
        • et al.
        Deletion mapping of chromosome 4q22-35 and identification of four frequently deleted regions in head and neck cancers.
        Neoplasma. 2008; 55: 299-304
        • Velasco A.
        • Pallares J.
        • Santacana M.
        • Yeramian A.
        • Dolcet X.
        • Eritja N.
        • et al.
        Loss of heterozygosity in endometrial carcinoma.
        Int J Gynecol Pathol. 2008; 27: 305-317
        • Ross D.W.
        Introduction to oncogenes and molecular cancer medicine.
        Springer, New York1998
        • Knudson Jr., A.G.
        Mutation and cancer: statistical study of retinoblastoma.
        Proc Natl Acad Sci USA. 1971; 68: 820-823
        • Peng Z.
        • Zhang F.
        • Zhou C.
        • Ling Y.
        • Bai S.
        • Liu W.
        • et al.
        Genome-wide search for loss of heterozygosity in Chinese patients with sporadic colorectal cancer.
        Int J Gastrointest Cancer. 2003; 34: 39-47
        • Choi S.W.
        • Lee K.J.
        • Bae Y.A.
        • Min K.O.
        • Kwon M.S.
        • Kim K.M.
        • et al.
        Genetic classification of colorectal cancer based on chromosomal loss and microsatellite instability predicts survival.
        Clin Cancer Res. 2002; 8: 2311-2322
        • Popat S.
        • Stone J.
        • Houlston R.S.
        Allelic imbalance in colorectal cancer at the CRAC1 locus in early-onset colorectal cancer.
        Cancer Genet Cytogenet. 2003; 145: 70-73
        • Zhou C.Z.
        • Qiu G.Q.
        • Zhang F.
        • He L.
        • Peng Z.H.
        Loss of heterozygosity on chromosome 1 in sporadic colorectal carcinoma.
        World J Gastroenterol. 2004; 10: 1431-1435
        • Kapitanović S.
        • Cacev T.
        • Radosević S.
        • Spaventi S.
        • Spaventi R.
        • Pavelić K.
        APC gene loss of heterozygosity, mutations, E1317Q, and I1307K germ-line variants in sporadic colon cancer in Croatia.
        Exp Mol Pathol. 2004; 77: 193-200
        • Cacev T.
        • Radosević S.
        • Spaventi R.
        • Pavelić K.
        • Kapitanović S.
        NF1 gene loss of heterozygosity and expression analysis in sporadic colon cancer.
        Gut. 2005; 54: 1129-1135
        • Chang S.C.
        • Lin J.K.
        • Lin T.C.
        • Liang W.Y.
        Loss of heterozygosity: an independent prognostic factor of colorectal cancer.
        World J Gastroenterol. 2005; 11: 778-784
        • Zheng H.T.
        • Peng Z.H.
        • Zhou C.Z.
        • Li D.P.
        • Wang Z.W.
        • Qiu G.Q.
        • et al.
        Detailed deletion mapping of loss of heterozygosity on 22q13 in sporadic colorectal cancer.
        World J Gastroenterol. 2005; 11: 1668-1672
        • Wan J.
        • Li H.
        • Li Y.
        • Zhu M.L.
        • Zhao P.
        Loss of heterozygosity of Kras2 gene on 12p12-13 in Chinese colon carcinoma patients.
        World J Gastroenterol. 2006; 12: 1033-1037
        • Mao X.
        • Hamoudi R.A.
        • Talbot I.C.
        • Baudis M.
        Allele-specific loss of heterozygosity in multiple colorectal adenomas: toward an integrated molecular cytogenetic map II.
        Cancer Genet Cytogenet. 2006; 167: 1-14
        • Sano T.
        • Tsujino T.
        • Yoshida K.
        • Nakayama H.
        • Haruma K.
        • Ito H.
        • et al.
        Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas.
        Cancer Res. 1991; 51: 2926-2931
        • Rutherford S.
        • Hampton G.M.
        • Frierson Jr., H.F.
        • Moskaluk A.
        Mapping of candidate tumor suppressor genes on chromosome 12 in adenoid cystic carcinoma.
        Lab Invest. 2005; 85: 1076-1085
        • Orita H.
        • Sakamoto N.
        • Ajioka Y.
        • Terai T.
        • Hino O.
        • Sato N.
        • et al.
        Allelic loss analysis of early-stage flat-type colorectal tumors.
        Ann Oncol. 2006; 17: 43-49
        • Kimura M.
        • Abe T.
        • Sunamura M.
        • Matsuno S.
        • Horii A.
        Detailed deletion mapping on chromosome arm 12q in human pancreatic adenocarcinoma: identification of a 1-cM region of common allelic loss.
        Genes Chromosomes Cancer. 1996; 17: 88-93
        • Kimura M.
        • Furukawa T.
        • Abe T.
        • Yatsuoka T.
        • Youssef E.M.
        • Yokoyama T.
        • et al.
        Identification of two common regions of allelic loss in chromosome arm 12q in human pancreatic cancer.
        Cancer Res. 1998; 58: 2456-2460
        • Yatsuoka T.
        • Sunamura M.
        • Furukawa T.
        • Fukushige S.
        • Yokoyama T.
        • Inoue H.
        • et al.
        Association of poor prognosis with loss of 12q, 17p, and 18q, and concordant loss of 6q/17p and 12q/18q in human pancreatic ductal adenocarcinoma.
        Am J Gastroenterol. 2000; 95: 2080-2085
        • Vogelstein B.
        • Gillespie D.
        Preparative and analytical purification of DNA from agarose.
        Proc Natl Acad Sci USA. 1979; 76: 615-619
        • Bandea Cl
        • Kubota K.
        • Brown T.M.
        • Kilmarx P.H.
        • Bhullar V.
        • Yanpaisarn S.
        • et al.
        Typing of Chlamydia trachomatis strains from urine samples by amplification and sequencing the major outer membrane protein gene (omp 1).
        Sex Transm Infect. 2001; 77: 419-422
        • Lee T.L.
        • Leung W.K.
        • Lau J.Y.W.
        • Tong J.H.M.
        • Ng E.K.W.
        • Chan F.K.L.
        • et al.
        Inverse association between cyclooxygenase-2 overexpression and microsatellite instability in gastric cancer.
        Cancer Lett. 2001; 168: 133-140
        • Reischl U.
        • Bretagne S.
        • Krüger D.
        • Ernault P.
        • Costa J.M.
        Comparison of two DNA targets for the diagnosis of toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes.
        BMC Infect Dis. 2003; 3: 7
        • Mayall F.
        • Barratt K.
        • Shanks J.
        The detection of simian virus 40 in mesotheliomas from New Zealand and England using real time FRET probe PCR protocols.
        J Clin Pathol. 2003; 56: 728-730
        • Kámory E.
        • Csókay B.
        • Holló Z.
        Rapid detection of cystic fibrosis transmembrane conductance regulator gene IVS8 5T variant by real-time PCR.
        Clin Chem. 2004; 50: 1837-1839
        • Slowik A.
        • Borratynska A.
        • Pera J.
        • Betlej M.
        • Dziedzic T.
        • Krzyszkowski T.
        • et al.
        II genotype of the angiotensin-converting enzyme gene increases the risk for subarachnoid hemorrhage from ruptured aneurysm.
        Stroke. 2004; 35: 1594-1597
        • Gunduz M.
        • Ouchida M.
        • Fukushima K.
        • Hanafusa H.
        • Etani T.
        • Nishioka S.
        • et al.
        Genomic structure of the human ING1 gene and tumor-specific mutations detected in head and neck squamous cell carcinomas.
        Cancer Res. 2000; 60: 3143-3146
        • Zheng H.T.
        • Jiang L.X.
        • Lv Z.C.
        • Li D.P.
        • Zhou C.Z.
        • Gao J.J.
        • et al.
        Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma?.
        World J Gastroenterol. 2008; 14: 90-94
        • Balmain A.
        New-age tumour suppressors.
        Nature. 2002; 417: 235-237
        • Fey M.F.
        • Hesketh C.
        • Wainscoat J.S.
        • Gendler S.
        • Thein S.L.
        Clonal allele loss in gastrointestinal cancers.
        Br J Cancer. 1989; 59: 750-754
        • Wang H.L.
        • Bai H.
        • Li Y.
        • Sun J.
        • Wang X.Q.
        Rationales for expression and altered expression of apoptotic protease activating factor-1 gene in gastric cancer.
        World J Gastroenterol. 2007; 13: 5060-5064
        • Bos J.L.
        Ras oncogenes in human cancer: a review.
        Cancer Res. 1989; 49 ([Erratum in: Cancer Res 1990;50:1352]): 4682-4689
        • Ohta M.
        • Seto M.
        • Ijichi H.
        • Miyabayashi K.
        • Kudo Y.
        • Mohri D.
        • et al.
        Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression.
        Gastroenterology. 2009; 136: 206-216
        • Kolfschoten I.G.M.
        • Leeuwen B.
        • Berns K.
        • Mullenders J.
        • Beijersbergen R.L.
        • Bernards R.
        • et al.
        A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity.
        Cell. 2005; 121: 849-858
        • Jin H.
        • Wang X.
        • Ying J.
        • Wong A.H.Y.
        • Cui Y.
        • Srivastava G.
        • et al.
        Epigenetic silencing of a Ca2+-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers.
        Proc Natl Acad Sci USA. 2007; 104: 12353-12358
        • El-Rifai W.
        • Rutherford S.
        • Knuutila S.
        • Frierson Jr., H.F.
        • Moskaluk C.A.
        Novel DNA copy number losses in chromosome 12q12-13 in adenoid cystic carcinoma.
        Neoplasia. 2001; 3: 173-178
        • Ren B.
        • Yu Y.P.
        • Tseng G.C.
        • Wu C.
        • Chen K.
        • Rao U.N.
        • et al.
        Analysis of integrin α7 mutations in prostate cancer, liver cancer, glioblastoma multiforme, and leiomyosarcoma.
        J Natl Cancer Inst. 2007; 99: 868-880
        • Park Y.M.
        • Kwon J.A.
        • Kelly L.A.
        • George R.D.
        • Mackey J.A.
        • Adachi H.
        • et al.
        HGNT-IV-H and FEEL-2/stabilin 2 represent potential candidate pancreatic cancer tumor suppressor genes localized to 12q21-23.
        Proc Annu Meet Am Assoc Cancer Res. 2005; ([Abstract]): 46
        • Ren C.
        • Li L.
        • Yang G.
        • Timme T.L.
        • Goltsov A.
        • Ren C.
        • et al.
        RTVP-1, a tumor suppressor inactivated by methylation in prostate cancer.
        Cancer Res. 2004; 64: 969-976
        • Ganapathy V.
        • Gopal E.
        • Miyauchi S.
        • Prasad P.D.
        Biological functions of SLC5A8, a candidate tumor suppressor.
        Biochem Soc Trans. 2005; 33: 237-240