Advertisement

Genomic, immunophenotypic, and NPM1/FLT3 mutational studies on 17 patients with normal karyotype acute myeloid leukemia (AML) followed by aberrant karyotype AML at relapse

      Abstract

      Normal karyotype (NK) is the most common cytogenetic group in acute myeloid leukemia (AML) diagnosis; however, up to 50% of these patients at relapse will have aberrant karyotype (AK) AML. To determine the etiology of relapsed AK AML cells, we evaluated cytogenetic, immunophenotypic, and molecular results of 17 patients with diagnostic NK AML and relapsed AK AML at our institute. AK AML karyotype was diverse, involving no favorable and largely (8 of 17) complex cytogenetics. Despite clear cytogenetic differences, immunophenotype and NPM1/FLT3 gene mutation status did not change between presentation and relapse in 83% (10 of 12) and 94% (15 of 16) cases, respectively. High-resolution array-based comparative genomic hybridization (aCGH) performed via paired aCGH on NK AML and AK AML samples from the same patient confirmed cytogenetic aberrations only in the relapse sample. Analysis of 16 additional diagnostic NK AML samples revealed no evidence of submicroscopic aberrations undetected by conventional cytogenetics in any case. These results favor evolution of NK AML leukemia cells with acquisition of novel genetic changes as the most common etiology of AK AML relapse as opposed to secondary leukemogenesis. Additional studies are needed to confirm whether AK AML cells represent selection of rare preexisting clones below aCGH detection and to further characterize the molecular lesions found at time of AK AML relapse.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Grimwade D.
        • Walker H.
        • Oliver F.
        • Wheatley K.
        • Harrison C.
        • Harrison G.
        • et al.
        The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties.
        Blood. 1998; 92: 2322-2333
        • Byrd J.C.
        • Mrozek K.
        • Dodge R.K.
        • Carroll A.J.
        • Edwards C.G.
        • Arthur D.C.
        • et al.
        Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461).
        Blood. 2002; 100: 4325-4336
        • Breems D.A.
        • Van Putten W.L.
        • Huijgens P.C.
        • Ossenkoppele G.J.
        • Verhoef G.E.
        • Verdonck L.F.
        • et al.
        Prognostic index for adult patients with acute myeloid leukemia in first relapse.
        J Clin Oncol. 2005; 23: 1969-1978
        • Kern W.
        • Haferlach T.
        • Schnittger S.
        • Ludwig W.D.
        • Hiddemann W.
        • Schoch C.
        Karyotype instability between diagnosis and relapse in 117 patients with acute myeloid leukemia: implications for resistance against therapy.
        Leukemia. 2002; 16: 2084-2091
        • Testa J.R.
        • Mintz U.
        • Rowley J.D.
        • Vardiman J.W.
        • Golomb H.M.
        Evolution of karyotypes in acute nonlymphocytic leukemia.
        Cancer Res. 1979; 39: 3619-3627
        • Estey E.
        • Keating M.J.
        • Pierce S.
        • Stass S.
        Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia.
        Leukemia. 1995; 9: 972-976
        • Garson O.M.
        • Hagemeijer A.
        • Sakurai M.
        • Reeves B.R.
        • Swansbury G.J.
        • Williams G.J.
        • et al.
        Cytogenetic studies of 103 patients with acute myelogenous leukemia in relapse.
        Cancer Genet Cytogenet. 1989; 40: 187-202
        • Mullighan C.G.
        • Phillips L.A.
        • Su X.
        • Ma J.
        • Miller C.B.
        • Shurtleff S.A.
        • et al.
        Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia.
        Science. 2008; 322: 1377-1380
        • Tyybakinoja A.
        • Elonen E.
        • Piippo K.
        • Porkka K.
        • Knuutila S.
        Oligonucleotide array–CGH reveals cryptic gene copy number alterations in karyotypically normal acute myeloid leukemia.
        Leukemia. 2007; 21: 571-574
        • Suela J.
        • Alvarez S.
        • Cigudosa J.C.
        DNA profiling by arrayCGH in acute myeloid leukemia and myelodysplastic syndromes.
        Cytogenet Genome Res. 2007; 118: 304-309
        • Lindvall C.
        • Furge K.
        • Bjorkholm M.
        • Guo X.
        • Haab B.
        • Blennow E.
        • et al.
        Combined genetic and transcriptional profiling of acute myeloid leukemia with normal and complex karyotypes.
        Haematologica. 2004; 89: 1072-1081
        • Cheson B.D.
        • Bennett J.M.
        • Kopecky K.J.
        • Buchner T.
        • Willman C.L.
        • Estey E.H.
        • et al.
        Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia.
        J Clin Oncol. 2003; 21: 4642-4649
        • Kansal R.
        • Deeb G.
        • Barcos M.
        • Wetzler M.
        • Brecher M.L.
        • Block A.W.
        • et al.
        Precursor B lymphoblastic leukemia with surface light chain immunoglobulin restriction: a report of 15 patients.
        Am J Clin Pathol. 2004; 121: 512-525
        • Murphy K.M.
        • Levis M.
        • Hafez M.J.
        • Geiger T.
        • Cooper L.C.
        • Smith B.D.
        • et al.
        Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay.
        J Mol Diagn. 2003; 5: 96-102
        • Nowak N.
        • Snijders A.
        • Conroy J.
        • Alterson D.
        The BAC resource: tools for array CGH and FISH.
        Curr Protoc Hum Genet. 2005; (Chapter 4:Unit 4.13)
        • Snijders A.M.
        • Nowak N.
        • Segraves R.
        • Blackwood S.
        • Brown N.
        • Conroy J.
        • et al.
        Assembly of microarrays for genome-wide measurement of DNA copy number.
        Nat Genet. 2001; 29: 263-264
        • Deeb G.
        • Baer M.R.
        • Gaile D.P.
        • Sait S.N.
        • Barcos M.
        • Wetzler M.
        • et al.
        Genomic profiling of myeloid sarcoma by array comparative genomic hybridization.
        Genes Chromosomes Cancer. 2005; 44: 373-383
        • Gunnarsson R.
        • Isaksson A.
        • Mansouri M.
        • Goransson H.
        • Jansson M.
        • Cahill N.
        • et al.
        Large but not small copy-number alterations correlate to high-risk genomic aberrations and survival in chronic lymphocytic leukemia: a high-resolution genomic screening of newly diagnosed patients.
        Leukemia. 2010; 24: 211-215
        • Sargent R.
        • Jones D.
        • Abruzzo L.V.
        • Yao H.
        • Bonderover J.
        • Cisneros M.
        • et al.
        Customized oligonucleotide array-based comparative genomic hybridization as a clinical assay for genomic profiling of chronic lymphocytic leukemia.
        J Mol Diagn. 2009; 11: 25-34
        • van de Wiel M.A.
        • Kim K.I.
        • Vosse S.J.
        • van Wieringen W.N.
        • Wilting S.M.
        • Ylstra B.
        CGHcall: calling aberrations for array CGH tumor profiles.
        Bioinformatics. 2007; 23: 892-894
        • Baer M.R.
        • Stewart C.C.
        • Dodge R.K.
        • Leget G.
        • Sule N.
        • Mrózek K.
        • et al.
        High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361).
        Blood. 2001; 97: 3574-3580
        • Nakano Y.
        • Kiyoi H.
        • Miyawaki S.
        • Asou N.
        • Ohno R.
        • Saito H.
        • et al.
        Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene.
        Br J Haematol. 1999; 104: 659-664
        • Naoe T.
        • Nakano Y.
        • Kiyoi H.
        Leukemia relapse reconsidered from the molecular aspect.
        Leuk Lymphoma. 2000; 37: 527-534
        • Stilgenbauer S.
        • Sander S.
        • Bullinger L.
        • Benner A.
        • Leupolt E.
        • Winkler D.
        • et al.
        Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival.
        Haematologica. 2007; 92: 1242-1245
        • Ruff P.
        • Saragas E.
        • Poulos M.
        • Weaving A.
        Patterns of clonal evolution in transformed chronic myelogenous leukemia.
        Cancer Genet Cytogenet. 1995; 81: 182-184
        • Michels E.
        • De Preter K.
        • Van Roy N.
        • Speleman F.
        Detection of DNA copy number alterations in cancer by array comparative genomic hybridization.
        Genet Med. 2007; 9: 574-584
        • Casas S.
        • Aventin A.
        • Fuentes F.
        • Vallespi T.
        • Granada I.
        • Carrio A.
        • et al.
        Genetic diagnosis by comparative genomic hybridization in adult de novo acute myelocytic leukemia.
        Cancer Genet Cytogenet. 2004; 153: 16-25
        • Nowak N.J.
        • Miecznikowski J.
        • Moore S.R.
        • Gaile D.
        • Bobadilla D.
        • Smith D.D.
        • et al.
        Challenges in array comparative genomic hybridization for the analysis of cancer samples.
        Genet Med. 2007; 9: 585-595
        • Cuneo A.
        • Bigoni R.
        • Cavazzini F.
        • Bardi A.
        • Roberti M.G.
        • Agostini P.
        • et al.
        Incidence and significance of cryptic chromosome aberrations detected by fluorescence in situ hybridization in acute myeloid leukemia with normal karyotype.
        Leukemia. 2002; 16: 1745-1751
        • Rowley J.D.
        • Potter D.
        Chromosomal banding patterns in acute nonlymphocytic leukemia.
        Blood. 1976; 47: 705-721
        • Ogasawara T.
        • Yasuyama M.
        • Kawauchi K.
        Therapy-related myelodysplastic syndrome with monosomy 5 after successful treatment of acute myeloid leukemia (M2).
        Am J Hematol. 2005; 79: 136-141
        • Ratain M.J.
        • Rowley J.D.
        Therapy-related acute myeloid leukemia secondary to inhibitors of topoisomerase II: from the bedside to the target genes.
        Ann Oncol. 1992; 3: 107-111
        • Krishnan A.
        • Bhatia S.
        • Slovak M.L.
        • Arber D.A.
        • Niland J.C.
        • Nademanee A.
        • et al.
        Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors.
        Blood. 2000; 95: 1588-1593
        • Arana-Yi C.
        • Block A.W.
        • Sait S.N.
        • Ford L.A.
        • Barcos M.
        • Baer M.R.
        Therapy-related myelodysplastic syndrome and acute myeloid leukemia following treatment of acute myeloid leukemia: possible role of cytarabine.
        Leuk Res. 2008; 32: 1043-1048
        • Borthakur G.
        • Estey A.E.
        Therapy-related acute myelogenous leukemia and myelodysplastic syndrome.
        Curr Oncol Rep. 2007; 9: 373-377
        • Seiter K.
        • Feldman E.J.
        • Sreekantaiah C.
        • Pozzuoli M.
        • Weisberger J.
        • Liu D.
        • et al.
        Secondary acute myelogenous leukemia and myelodysplasia without abnormalities of chromosome 11q23 following treatment of acute leukemia with topoisomerase II–based chemotherapy.
        Leukemia. 2001; 15: 963-970
        • Basecke J.
        • Podleschny M.
        • Becker A.
        • Seiffert E.
        • Schwiers I.
        • Schwiers R.
        • et al.
        Therapy-associated genetic aberrations in patients treated for non-Hodgkin lymphoma.
        Br J Haematol. 2008; 141: 52-59
        • Wang Y.
        • Zhou R.
        • Liliemark J.
        • Gruber A.
        • Lindemalm S.
        • Albertioni F.
        • et al.
        In vitro topo II–DNA complex accumulation and cytotoxicity of etoposide in leukaemic cells from patients with acute myelogenous and chronic lymphocytic leukaemia.
        Leuk Res. 2001; 25: 133-140
        • Maciejewski J.P.
        • Mufti G.J.
        Whole genome scanning as a cytogenetic tool in hematologic malignancies.
        Blood. 2008; 112: 965-974
        • Mardis E.R.
        • Ding L.
        • Dooling D.J.
        • Larson D.E.
        • McLellan M.D.
        • Chen K.
        • et al.
        Recurring mutations found by sequencing an acute myeloid leukemia genome.
        N Engl J Med. 2009; 361: 1058-1066
        • Kern W.
        • Schoch C.
        • Haferlach T.
        • Braess J.
        • Unterhalt M.
        • Wormann B.
        • et al.
        Multivariate analysis of prognostic factors in patients with refractory and relapsed acute myeloid leukemia undergoing sequential high-dose cytosine arabinoside and mitoxantrone (S-HAM) salvage therapy: relevance of cytogenetic abnormalities.
        Leukemia. 2000; 14: 226-231
        • Kuptsova N.
        • Kopecky K.J.
        • Godwin J.
        • Anderson J.
        • Hoque A.
        • Willman C.L.
        • et al.
        Polymorphisms in DNA repair genes and therapeutic outcomes of AML patients from SWOG clinical trials.
        Blood. 2007; 109: 3936-3944
        • Staal F.
        • de Ridder D.
        • Szczepanski T.
        • Schonewille T.
        • van der Linden E.
        • van Wering E.
        • et al.
        Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.
        Leukemia. 2010; 24: 491-499