Original articles| Volume 114, ISSUE 2, P126-129, October 15, 1999

Download started.


Chromosome 16 Inversion-Associated Translocation

Two New Cases


      Two patients with chromosome 16 inversion-associated translocation were studied with conventional cytogenetic and fluorescence in situ hybridization (FISH) techniques. The same chromosome 16 was involved in inversion and translocation in both patients. The chromosome translocation breakpoint was located within the heterochromatin of chromosome 16 but outside the alpha satellite domain in the t(10;16) of the first patient, whereas it was outside the heterochromatin area in the second case with t(1;16). These two types of rearrangements may be due to different mechanisms and illustrate the possible difficulties in recognizing the chromosome 16 inversion without FISH studies.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Berger R.
        • Derré J.
        • Le Coniat M.
        • Hébert J.
        • Romana P.S.
        • Jonveaux P.
        Variant translocations and inversion-associated translocations in acute myelomonocytic leukemia with eosinophilia.
        Genes Chromosom Cancer. 1995; 12: 58-62
        • Dierlamm J.
        • Stul M.
        • Vranckx H.
        • Mihcaux L.
        • Olde Weghuis D.E.M.
        • Speleman F.
        • Selleslag D.
        • Kramer M.H.H.
        • Noens L.A.
        • Cassiman J.-J.
        • Van den Berghe H.
        • Hagemeijer A.
        FISH identifies inv(16)(p13q22) masked by translocations in three cases of acute myeloid leukemia.
        Genes Chromosom Cancer. 1998; 22: 87-94
        • Mitelman F.
        • Johansson B.
        • Mertens F.
        Catalog of Chromosome Aberrations in Cancer. 5th ed. Wiley-Liss, New York1994
        • de la Chapelle A.
        • Lahtinen R.
        Chromosome 16 and bone-marrow eosinophilia.
        N Engl J Med. 1983; 309: 1394
        • Kessler L.G.
        • Little B.B.
        • Redrow M.W.
        • Schneider N.R.
        Temporal variation in nucleolar organizer region expression in bone marrow cells of individuals with leukemia.
        Cancer Genet Cytogenet. 1988; 35: 109-117
        • Campbell L.J.
        • Challis J.
        • Fok T.
        • Garson O.M.
        Chromosome 16 abnormalities associated with myeloid malignancies.
        Genes Chromosom Cancer. 1991; 3: 55-61
        • Yip M.-Y.
        • Sharma P.
        • White L.
        Acute myelomonocytic leukemia with bone marrow eosinophilia and inv(Math Eq)(p13q22), t(1;Math Eq)(q32;q22).
        Cancer Genet Cytogenet. 1991; 51: 235-238
        • Liu P.
        • Tarlé S.A.
        • Hajra A.
        • Claxton D.F.
        • Marlton P.
        • Freedman M.
        • Siciliano M.J.
        • Collins F.S.
        Fusion between transcription factor CBFβ/PEPBP2β and a myosin heavy chain in acute myeloid leukemia.
        Science. 1993; 261: 1041-1044
        • Martinet D.
        • Mühlematter D.
        • Leeman M.
        • Parlier V.
        • Hess U.
        • Gmür J.
        • Jotterand M.
        Detection of 16p deletions by FISH in patients with inv(16) or t(16;16) and acute myeloid leukemia (AML).
        Leukemia. 1997; 11: 964-970