Advertisement
Original articles| Volume 114, ISSUE 2, P144-149, October 15, 1999

Download started.

Ok

Simple Numerical Chromosome Aberrations Characterize Pituitary Adenomas

      Abstract

      Although pituitary adenomas are among the most frequent intracranial neoplasms, only very few have been cytogenetically analyzed. We have short-term cultured and karyotyped 28 consecutive pituitary adenomas (16 clinically nonfunctioning adenomas and 12 clinically functioning adenomas), finding a normal karyotype in 22, whereas 6 had clonal chromosome aberrations (5 nonfunctioning pituitary adenomas and 1 prolactinoma). The abnormal karyotypes were relatively simple. Most anomalies were numerical, with a structural rearrangement, t(6;19), being found in only one tumor. The most common aberrations were trisomy 7 (3 adenomas), trisomy 9 (2 adenomas), trisomy 12 (2 adenomas), trisomy 20 (2 adenomas), and loss and gain in 2 separate clones of one X chromosome (2 adenomas).
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marshall J.C.
        • Barkan A.L.
        Disorders of the hypothalamus and anterior pituitary.
        in: Kelly W.N. In Textbook of Internal Medicine. ed 2. J. B. Lippincott Company, New York1992: 1977
        • Molitch M.E.
        • Russell E.J.
        The pituitary “incidentaloma.”.
        Ann Intern Med. 1990; 112: 925-931
        • Larsson C.
        • Friedman E.
        Localization and identification of the multiple endocrine neoplasia type 1 disease gene.
        Endocrinol Metab Clin North Am. 1994; 23: 67-79
        • Chandrasekharappa S.C.
        • Guru S.C.
        • Manickam P.
        • Olufemi S.E.
        • Collins F.S.
        • Emmert-Buck M.R.
        • Debelenko L.V.
        • Zhuang Z.
        • Lubensky I.A.
        • Liotta L.A.
        • Crabtree J.S.
        • Wang Y.
        • Roe B.A.
        • Weisemann J.
        • Boguski M.S.
        • Agarwal S.K.
        • Kester M.B.
        • Kim Y.S.
        • Heppner C.
        • Dong Q.
        • Spiegel A.M.
        • Burns A.L.
        • Marx S.J.
        Positional cloning of the gene for multiple endocrine neoplasia-type 1.
        Science. 1997; 276: 404-407
        • Kovacs K.
        • Scheithauer B.W.
        • Horvath E.
        • Lloyd R.V.
        The World Health Organization classification of adenohypophysial neoplasms.
        Cancer. 1996; 78: 502-510
        • Mark J.
        Chromosomal characteristics of human pituitary adenomas.
        Acta Neuropathol (Berl). 1971; 19: 99-109
        • Yamada K.
        • Kondo T.
        • Yoshioka M.
        • Oami H.
        Cytogenetic studies in twenty human brain tumors.
        Cancer Genet Cytogenet. 1980; 2: 293-307
        • Rey J.A.
        • Bello M.J.
        • de Campos J.M.
        • Ramos M.C.
        Chromosomal abnormalities in human brain tumors.
        European Society of Human Genetics. Clin Genet. 1985; 27: 330-331
        • Rey J.A.
        • Bello M.J.
        • de Campos J.M.
        • Kusak M.E.
        • Martı́nez-Castro P.
        • Benı́tez J.
        A case of pituitary adenoma with 58 chromosomes.
        Cancer Genet Cytogenet. 1986; 10: 159-165
        • Capra E.
        • Santi G.
        • Spina M.P.
        • Scappaticci S.
        Chromosome abnormalities in a case of pituitary adenoma.
        Cancer Genet Cytogenet. 1993; 68: 140-142
        • Capra E.
        • Scappaticci S.
        • Spina M.P.
        Chromosome abnormalities in tumor and lymphocyte cultures from patients with pituitary adenomas.
        Cancer Genet Cytogenet. 1995; 84: 89
        • Dietrich C.U.
        • Pandis N.
        • Bjerre P.
        • Schrøder H.D.
        • Heim S.
        Simple numerical chromosome aberrations in two pituitary adenomas.
        Cancer Genet Cytogenet. 1993; 69: 118-121
        • Papi L.
        • Baldassarri G.
        • Montali E.
        • Bigozzi U.
        • Ammannati F.
        • Brandi M.L.
        Cytogenetic studies in sporadic and multiple endocrine neoplasia type I-associated pituitary adenomas.
        Genes Chromosom Cancer. 1993; 7: 63-65
        • Rock J.P.
        • Babu V.R.
        • Drumheller T.
        • Chason J.
        Cytogenetic findings in pituitary adenoma.
        Surg Neurol. 1993; 40: 224-229
        • Gollin S.M.
        • Janecka I.P.
        Cytogenetics of cranial base tumors.
        J Neuro-Oncol. 1994; 20: 241-254
        • Bettio D.
        • Rizzi N.
        • Giardino D.
        • Persani L.
        • Pecori-Giraldi F.
        • Larizza L.
        Cytogenetic studies of pituitary adenomas.
        Cancer Genet Cytogenet. 1997; 98: 131-136
      1. ISCN (1995): An International System for Human Cytogenetic Nomenclature. F Mitelman, ed. S. Karger, Basel.

        • Molitch M.E.
        Pathogenesis of pituitary tumors.
        Endocrinol Metab Clin North Am. 1987; 16: 503-527
        • Shimon I.
        • Melmed S.
        Genetic basis of endocrine disease.
        J Clin Endocrinol Metab. 1997; 82: 1675-1681
        • Vallar L.
        • Spada A.
        • Giannattasio G.
        Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas.
        Nature. 1987; 330: 566-568
        • Landis C.A.
        • Masters S.B.
        • Spada A.
        • Pace A.M.
        • Bourne H.R.
        • Vallar L.
        GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylate cyclase in human pituitary tumors.
        Nature. 1989; 340: 692-696
        • Landis C.A.
        • Harsh G.
        • Lyons J.
        • Davis R.L.
        • McCormick F.
        • Bourne H.R.
        Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein.
        J Clin Endocrinol Metab. 1990; 71: 1416-1420
        • Spada A.
        • Arosio M.
        • Bochicchio D.
        • Bazzoni N.
        • Vallar L.
        • Bassetti M.
        • Faglia G.
        Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase.
        J Clin Endocrinol Metab. 1990; 71: 1421-1426
        • Alexander J.M.
        • Biller B.M.K.
        • Bikkal H.
        • Zervas T.
        • Arnold A.
        • Klibanski A.
        Clinically nonfunctioning pituitary tumors are monoclonal in origin.
        J Clin Invest. 1990; 86: 336-340
        • Gicquel C.
        • Bouc L.Y.
        • Luton J.-P.
        • Girard F.
        • Bertagna X.
        Monoclonality of corticotroph macroadenomas in Cushing's disease.
        J Clin Endocrinol Metab. 1992; 75: 472-475
        • Herman V.
        • Fagin J.
        • Gonsky R.
        • Kovacs K.
        • Melmed S.
        Clonal origin of pituitary adenomas.
        J Clin Endocrinol Metab. 1990; 71: 1427-1433
        • Jacoby L.B.
        • Hedley-White E.T.
        • Seizinger B.R.
        • Martuza R.L.
        Clonal origin of pituitary adenomas.
        J Neurosurg. 1990; 73: 731-735
        • Thakker R.V.
        • Wooding B.M.
        • Scanarini M.
        • Clayton R.N.
        Association of somatotrophinomas with loss of alleles on chromosome 11 with gsp mutations.
        J Clin Invest. 1993; 91: 2815-2821
        • Boggild M.D.
        • Jenkinson S.
        • Pistorello M.B.
        • Scanarini M.
        • Mcternan P.
        • Perrett C.W.
        • Thakker R.V.
        • Clayton R.N.
        Molecular genetic studies of sporadic pituitary tumors.
        J Clin Endocrinol Metab. 1994; 78: 387-392
        • Bates A.S.
        • Farrell W.E.
        • Bicknell E.J.
        • McNicol A.M.
        • Talbot A.J.
        • Broome J.C.
        • Perrett C.V.
        • Thakker R.V.
        • Clayton R.N.
        Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker.
        J Clin Endocrinol Metab. 1997; 82: 818-824
        • Farrell V.E.
        • Simpson D.J.
        • Bicknell J.E.
        • Talbot A.J.
        • Bates A.S.
        • Clayton R.N.
        Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas.
        Cancer Res. 1997; 57: 2703-2709
        • Tanaka C.
        • Yoshimoto K.
        • Yang P.
        • Kimura T.
        • Yamada S.
        • Moritani M.
        • Sano T.
        • Itakura M.
        Infrequent mutations of p27Kip1 gene and trisomy 12 in a subset of human pituitary adenomas.
        J Clin Endocrinol Metab. 1997; 82: 3141-3147
        • Belge G.
        • Thode B.
        • Rippe V.
        • Bartnitzke S.
        • Bullerdiek J.
        A characteristic sequence of trisomies starting with trisomy 7 in benign thyroid tumors.
        Hum Genet. 1994; 94: 198-202
        • Criado B.
        • Barros A.
        • Suijkerbuijk R.F.
        • Weghuis D.O.
        • Seruca R.
        • Fonseca E.
        • Castedo S.
        Detection of numerical alterations for chromosomes 7 and 12 in benign thyroid lesions by in situ hybridization.
        Am J Pathol. 1995; 147: 136-144
        • Mitelman F.
        Catalog of Chromosome Aberrations in Cancer. ed 5. Wiley-Liss, New York1994
        • Johansson B.
        • Heim S.
        • Mandahl N.
        • Mertens F.
        • Mitelman F.
        Trisomy 7 in nonneoplastic cells.
        Genes Chromosom Cancer. 1993; 6: 199-205
        • Miyata A.
        • Arimura A.
        • Dahl R.R.
        • Minamino N.
        • Uehara A.
        • Jiang L.
        • Culler M.D.
        • Coy D.H.
        Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells.
        Biochem Biophys Res Commun. 1989; 164: 567-574
        • Miyata A.
        • Jiang L.
        • Dahl R.D.
        • Kitada C.
        • Kubo K.
        • Fujino M.
        • Minamino N.
        • Arimura A.
        Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38).
        Biochem Biophys Res Commun. 1990; 170: 643-648
        • Stoffel M.
        • Espinosa R.
        • Trabb J.B.
        • Le Beau M.M.
        • Bell G.I.
        Human type I pituitary adenylate cyclase activating polypeptide receptor (ADCYAP1R).
        Genomics. 1994; 23: 697-699
        • Brabet P.
        • Diriong S.
        • Journot L.
        • Bockaert J.
        • Taviaux S.
        Localization of the human pituitary adenylate cyclase-activating polypeptide receptor (PACAP1-R) gene to 7p15–p14 by fluorescence in sity hybridization.
        Genomics. 1996; 38: 100-102
        • Mackay M.
        • Fantes J.
        • Scherer S.
        • Boyle S.
        • West K.
        • Tsui L.C.
        • Belloni E.
        • Lutz E.
        • Van Heyningen V.
        • Harmar A.J.
        Chromosomal localization in mouse and human of the vasoactive intestinal peptide receptor type 2 gene.
        Genomics. 1996; 37: 345-353
        • Daniely M.
        • Aviram A.
        • Adams E.F.
        • Buchfelder M.
        • Barkai G.
        • Fahlbusch R.
        • Goldman B.
        • Friedman E.
        Comparative genomic hybridization analysis of nonfunctioning pituitary tumors.
        J Clin Endocrinol Metab. 1998; 83: 1801-1805