Advertisement
Original articles| Volume 114, ISSUE 2, P100-107, October 15, 1999

Download started.

Ok

Clinical Implications of Fluorescence In Situ Hybridization Analysis in 13 Chronic Myeloid Leukemia Cases

Ph-Negative and Variant Ph-Positive

      Abstract

      Thirteen chronic myeloid leukemia (CML) patients, 10 with variant Philadelphia (Ph) translocations and 3 Ph negative cases, were analyzed by fluorescence in situ hybridization (FISH) with the use of BCR and ABL cosmid probes and a chromosome 22 painting probe. In the variant Ph translocations, the BCR-ABL fusion gene was located on the Ph chromosome; in 1 CML Ph-negative patient, the BCR-ABL fusion gene was located on the Ph chromosome; and, in 2 patients, it was located on chromosome 9. The chromosome 22 painting probe was detected on the third-party chromosome of the variant translocation, and in none of the variant translocations was there any detectable signal on chromosome 9. In CML patients with clonal evolution of a simple Ph, a signal of the chromosome 22 painting probe was detected on the der(9) of the Ph translocation. It was concluded that the variant Ph translocations evolved simultaneously in a three-way rearrangement. The clinical parameters of the 13 patients were similar to those of a large group of CML patients with a simple Ph translocation. It is suggested that, to determine the prognosis of CML patients with a complex karyotype, FISH analysis with a chromosome 22 painting probe be performed.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mitelman F.
        The cytogenetic scenario of chronic myeloid leukemia.
        Leuk Lymphoma. 1993; 11: 11-15
        • Aurich J.
        • Dastugue N.
        • Duchayne E.
        • Schlaifer D.
        • Rigal-Huguet F.
        • Caballin M.R.
        Location of the BCR-ABL fusion gene on the 9q34 band in two cases of Ph-positive chronic myeloid leukemia.
        Genes Chromosom Cancer. 1997; 20: 148-154
        • Fitzgerald P.H.
        • Morris C.M.
        Ph-negative chronic myeloid leukemia.
        Leuk Lymphoma. 1992; 6: 277-287
        • Hagemeijer A.
        • Buijs A.
        • Smit E.
        • Janssen B.
        • Creemers G.-J.
        • Van der Plas D.
        • Grosveld G.
        Translocation of BCR to chromosome 9.
        Genes Chromosom Cancer. 1993; 8: 237-245
        • Huret J.L.
        Complex translocation, simple variant translocations and Ph-negative cases in chronic myelogenous leukemias.
        Hum Genet. 1990; 85: 565-568
        • Sokal J.E.
        • Cox E.B.
        • Baccarani M.
        • Tura S.
        • Gomez G.A.
        • Robertson J.E.
        • Tso C.Y.
        • Braun T.J.
        • Clarkson B.D.
        • Cervantes F.
        • Rozman C.
        • Italian Cooperative CML Study Group
        Prognostic discrimination in “good risk” chronic granulocytic leukemia.
        Blood. 1984; 63: 789-799
        • Michaeli J.
        • Lerer I.
        • Rachmilewitz E.A.
        • Fibach E.
        Stimulation of proliferation of human myeloid cells in culture.
        Blood. 1986; 68: 790-793
        • Benn P.A.
        • Perle M.A.
        Chromosome staining and banding techniques.
        in: Rooney D.E. Czepulkowski B.H. Human Cytogenetics Constitutional Analysis, a practical approach, ed 2, vol 1. IRL Press, Oxford, Washington DC1992: 91-118
        • Kawasaki E.S.
        • Clarck S.S.
        • Coyne M.Y.
        • Smith S.D.
        • Champlin R.
        • Witte O.N.
        • McCormick F.P.
        Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro.
        Proc Natl Acad Sci USA. 1988; 85: 5698-5702
        • Abeliovich D.
        • Yehuda O.
        • Krichevsky S.
        • Nagler A.
        • Ben-Neria S.
        • Werner M.
        • Ludkovsky O.
        • Ben-Yehuda D.
        “Reversed” BCR/ABL rearrangement detected by FISH in Philadelphia-negative chronic myeloid leukemia.
        Cancer Genet Cytogenet. 1995; 81: 115-117
        • Heim S.
        • Mitelman F.
        Cancer Cytogenetics. ed 2. Wiley-Liss, New York1995
        • Gudi R.
        • Elizalde A.
        • Gogineni S.K.
        • Macera M.J.
        • Badillo A.
        • Verma R.S.
        Characterization of a complex translocation [t(4;9;22)(p16;q34;q11)] in chronic myelogenous leukemia by fluorescence in situ hybridization.
        Cancer Genet Cytogenet. 1996; 90: 142-145
        • Young C.
        • Di Benedetto J.
        • Glasser L.
        • Mark H.F.L.
        A Philadelphia chromosome positive CML patient, with a unique translocation studied via GTG-banding and fluorescence in situ hybridization.
        Cancer Genet Cytogenet. 1996; 89: 157-162
        • McKeithan T.W.
        • Warshawsky L.
        • Espinosa III, R.
        • Le Beau M.
        Molecular cloning of the breakpoints of a complex Philadelphia chromosome translocation.
        Proc Natl Acad Sci USA. 1992; 89: 4923-4927
        • Jeffs A.R.
        • Benjes S.M.
        • Smith T.L.
        • Sowerby S.J.
        • Morris C.M.
        The BCR gene recombines preferentially with Alu elements in complex BCR-ABL translocations of chronic myeloid leukemia.
        Hum Mol Genet. 1988; 7: 767-776
        • Calabrese G.
        • Stuppia L.
        • Franchi G.P.
        • Peila R.
        • Morizio E.
        • Liberati A.M.
        • Spadano A.
        • Di Lorenzo R.
        • Donti E.
        • Antonucci A.
        • Palka G.
        Complex translocations of the Philadelphia chromosome and Philadelphia negative CML arise from similar mechanisms as evidenced by FISH analysis.
        Cancer Genet Cytogenet. 1994; 78: 153-159
        • Macera M.J.
        • Szabo P.
        • Lin J.H.
        • DeSalvo T.
        • Shah H.O.
        • Verma R.S.
        Direct visualization of the transposed ABL gene in a duplicated masked Ph chromosome.
        Genes Chromosom Cancer. 1993; 8: 127-130
        • Nacheva E.
        • Holloway T.
        • Brown K.
        • Bloxham D.
        • Green A.R.
        Philadelphia-negative chronic myeloid leukaemia.
        Br J Haematol. 1993; 87: 409-412
        • Mohamed A.N.
        • Koppitch F.
        • Varterasian M.
        • Karanes C.
        • Yao K.L.
        • Sarker F.H.
        BCR/ABL fusion located on chromosome 9 in chronic myeloid leukemia with masked Philadelphia chromosome.
        Genes Chromosom Cancer. 1995; 13: 133-137
        • Brunel V.
        • Sainty D.
        • Costello R.
        • Mozziconacci M.-J.
        • Simonetti J.
        • Arnoulet C.
        • Coignet L.
        • Bouabdallah R.
        • Gastaut J.-A.
        • Gabert J.
        • Lafage-Pochitaloff M.
        Translocation of BCR to chromosome 9 in a Philadelphia-negative chronic myeloid leukemia.
        Cancer Genet Cytogenet. 1995; 85: 82-84
        • Takahashi N.
        • Miura I.
        • Ohshima A.
        • Utsumi S.
        • Nimura T.
        • Hashimoto K.
        • Saito M.
        • Miura A.B.
        Duplication of chromosome 9 carrying a BCR/ABL chimeric gene in Philadelphia chromosome negative chronic myeloid leukemia.
        Cancer Genet Cytogenet. 1996; 89: 166-169
        • Zhang Y.
        • Weber-Matthiesen K.
        • Schoch R.
        • Schlegelberger B.
        Variant Philadelphia translocation t(9;17)(q34.2-3;q21.3) with colocalization of the BCR and ABL genes on chromosome 9 in chronic myeloid leukemia.
        Cancer Genet Cytogenet. 1997; 96: 87-89
        • Acar H.
        • Stewart J.
        • Connor M.J.
        Philadelphia chromosome in chronic myeloid leukemia.
        Cancer Genet Cytogenet. 1997; 94: 75-78
        • Estop A.M.
        • Sherer C.
        • Cieply K.
        • Groft D.
        • Burcoglu S.
        • Jhanwar S.
        • Thomas J.
        A Ph-negative chronic myeloid leukemia patient with a non-classical BCR-ABL rearrangement characterized by fluorescence in situ hybridization.
        Cancer Genet Cytogenet. 1997; 96: 174-176
        • Sandberg A.A.
        The Chromosomes in Human Cancer and Leukemia. Elsevier, New York1990
        • Martiat P.
        • Michaux J.L.
        • Rodhain J.
        Philadelphia-negative (Ph−) chronic myeloid leukemia (CML).
        Blood. 1991; 78: 205-211
        • van der Plas D.C.
        • Grosveld G.
        • Hagemeijer A.
        Review of clinical, cytogenetic, and molecular aspects of Ph-negative CML.
        Cancer Genet Cytogenet. 1991; 52: 143-156
        • Slovak M.L.
        • Kopecky K.J.
        • Wolman S.R.
        • Henslee-Downey J.P.
        • Appelbaum F.R.
        • Forman S.J.
        • Blume K.G.
        Cytogenetic correlation with disease status and treatment outcome in advanced stage leukemia post bone marrow transplantation.
        Leuk Res. 1995; 19: 381-388
        • O'Brien S.
        • Thall P.F.
        • Sicilliano M.J.
        Cytogenetics of chronic myelogenous leukemia.
        Baillieres Clin Haematol. 1997; 10: 259-276