Genetics of adult glioma

      Gliomas make up approximately 30% of all brain and central nervous system tumors and 80% of all malignant brain tumors. Despite the frequency of gliomas, the etiology of these tumors remains largely unknown. Diffuse gliomas, including astrocytomas and oligodendrogliomas, belong to a single pathologic class but have very different histologies and molecular etiologies. Recent genomic studies have identified separate molecular subtypes within the glioma classification that appear to correlate with biological etiology, prognosis, and response to therapy. The discovery of these subtypes suggests that molecular genetic tests are and will be useful, beyond classical histology, for the clinical classification of gliomas. While a familial susceptibility to glioma has been identified, only a small percentage of gliomas are thought to be due to single-gene hereditary cancer syndromes. Through the use of linkage studies and genome-wide association studies, multiple germline variants have been identified that are beginning to define the genetic susceptibility to glioma.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Louis D.N.
        • Ohgaki H.
        • Wiestler O.D.
        • et al.
        WHO Classification of Tumours of the Central Nervous System.
        International Agency for Research on Cancer (IARC) Press, Lyon2007
        • Wu W.
        • Lamborn K.R.
        • Buckner J.C.
        • et al.
        Joint NCCTG and NABTC prognostic factors analysis for high-grade recurrent glioma.
        Neuro Oncol. 2010; 12: 164-172
      1. Central Brain Tumor Registry of the United States (CBTRUS). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2004–2007. Available at: www.cbtrus.org/2011-npcr-seer/web-0407-report-3-3-2011.pdf. Accessed on August 16, 2011.

        • Giannini C.
        • Burger P.C.
        • Berkey B.A.
        • et al.
        Anaplastic oligodendroglial tumors: refining the correlation among histopathology, 1p 19q deletion and clinical outcome in Intergroup Radiation Therapy Oncology Group Trial 9402.
        Brain Pathol. 2008; 18: 360-369
        • Bender A.M.
        • Rodriguez F.J.
        • Sarkar G.
        • et al.
        Tumors of the Nervous System.
        in: Heim S. Mitelman F. Cancer Cytogenetics. 3rd ed. Wiley-Blackwell, Hoboken, New Jersey2009: 597-619
        • Bondy M.L.
        • Scheurer M.E.
        • Malmer B.
        • et al.
        Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium.
        Cancer. 2008; 113: 1953-1968
        • Karlsson P.
        • Holmberg E.
        • Lundell M.
        • et al.
        Intracranial tumors after exposure to ionizing radiation during infancy: a pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma.
        Radiat Res. 1998; 150: 357-364
        • Inskip P.D.
        • Linet M.S.
        • Heineman E.F.
        Etiology of brain tumors in adults.
        Epidemiol Rev. 1995; 17: 382-414
        • Ohgaki H.
        • Kleihues P.
        Epidemiology and etiology of gliomas.
        Acta Neuropathol. 2005; 109: 93-108
      2. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study.
        Int J Epidemiol. 2010; 39: 675-694
        • Little M.P.
        • Rajaraman P.
        • Curtis R.E.
        • et al.
        Mobile phone use and glioma risk: comparison of epidemiological study results with incidence trends in the United States.
        BMJ. 2012; 344: e1147
        • Wrensch M.
        • Minn Y.
        • Chew T.
        • et al.
        Epidemiology of primary brain tumors: current concepts and review of the literature.
        Neuro Oncol. 2002; 4: 278-299
        • Schlehofer B.
        • Blettner M.
        • Preston-Martin S.
        • et al.
        Role of medical history in brain tumour development. Results from the international adult brain tumour study.
        Int J Cancer. 1999; 82: 155-160
        • Linos E.
        • Raine T.
        • Alonso A.
        • et al.
        Atopy and risk of brain tumors: a meta-analysis.
        J Natl Cancer Inst. 2007; 99: 1544-1550
        • Wiemels J.L.
        • Wiencke J.K.
        • Kelsey K.T.
        • et al.
        Allergy-related polymorphisms influence glioma status and serum IgE levels.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 1229-1235
        • Wrensch M.
        • Wiencke J.K.
        • Wiemels J.
        • et al.
        Serum IgE, tumor epidermal growth factor receptor expression, and inherited polymorphisms associated with glioma survival.
        Cancer Res. 2006; 66: 4531-4541
        • Atlas T.C.G.
        Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
        Nature. 2008; 455: 1061-1068
        • Yan H.
        • Parsons D.W.
        • Jin G.
        • et al.
        IDH1 and IDH2 mutations in gliomas.
        N Engl J Med. 2009; 360: 765-773
        • Parsons D.W.
        • Jones S.
        • Zhang X.
        • et al.
        An integrated genomic analysis of human glioblastoma multiforme.
        Science. 2008; 321: 1807-1812
        • Verhaak R.G.
        • Hoadley K.A.
        • Purdom E.
        • et al.
        Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
        Cancer Cell. 2010; 17: 98-110
        • Huse J.T.
        • Phillips H.S.
        • Brennan C.W.
        Molecular subclassification of diffuse gliomas: seeing order in the chaos.
        Glia. 2011; 59: 1190-1199
        • Phillips H.S.
        • Kharbanda S.
        • Chen R.
        • et al.
        Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.
        Cancer Cell. 2006; 9: 157-173
        • Brennan C.
        • Momota H.
        • Hambardzumyan D.
        • et al.
        Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations.
        PLoS One. 2009; 4: e7752
        • Noushmehr H.
        • Weisenberger D.J.
        • Diefes K.
        • et al.
        Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma.
        Cancer Cell. 2010; 17: 510-522
        • Gorovets D.
        • Kannan K.
        • Shen R.
        • et al.
        IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma.
        Clin Cancer Res. 2012; 18: 2490-2501
        • Kim T.Y.
        • Zhong S.
        • Fields C.R.
        • et al.
        Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma.
        Cancer Res. 2006; 66: 7490-7501
        • Esteller M.
        CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future.
        Oncogene. 2002; 21: 5427-5440
        • Ohgaki H.
        • Kleihues P.
        Genetic pathways to primary and secondary glioblastoma.
        Am J Pathol. 2007; 170: 1445-1453
        • Nakamura M.
        • Watanabe T.
        • Yonekawa Y.
        • et al.
        Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G: C --> A: T mutations of the TP53 tumor suppressor gene.
        Carcinogenesis. 2001; 22: 1715-1719
        • Nobusawa S.
        • Watanabe T.
        • Kleihues P.
        • et al.
        IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas.
        Clin Cancer Res. 2009; 15: 6002-6007
        • Lu C.
        • Ward P.S.
        • Kapoor G.S.
        • et al.
        IDH mutation impairs histone demethylation and results in a block to cell differentiation.
        Nature. 2012; 483: 474-478
        • Turcan S.
        • Rohle D.
        • Goenka A.
        • et al.
        IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype.
        Nature. 2012; 483: 479-483
        • Bredel M.
        • Scholtens D.M.
        • Yadav A.K.
        • et al.
        NFKBIA deletion in glioblastomas.
        N Engl J Med. 2011; 364: 627-637
        • Watanabe T.
        • Katayama Y.
        • Komine C.
        • et al.
        O6-methylguanine-DNA methyltransferase methylation and TP53 mutation in malignant astrocytomas and their relationships with clinical course.
        Int J Cancer. 2005; 113: 581-587
        • Pegg A.E.
        • Byers T.L.
        Repair of DNA containing O6-alkylguanine.
        FASEB J. 1992; 6: 2302-2310
        • Paz M.F.
        • Yaya-Tur R.
        • Rojas-Marcos I.
        • et al.
        CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas.
        Clin Cancer Res. 2004; 10: 4933-4938
        • Esteller M.
        • Garcia-Foncillas J.
        • Andion E.
        • et al.
        Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents.
        N Engl J Med. 2000; 343: 1350-1354
        • Hegi M.E.
        • Diserens A.C.
        • Gorlia T.
        • et al.
        MGMT gene silencing and benefit from temozolomide in glioblastoma.
        N Engl J Med. 2005; 352: 997-1003
        • Gilbert M.R.
        • Wang M.
        • Aldape K.
        • et al.
        RTOG 0525: a randomized phase iii trial comparing standard adjuvant temozolomide (TMZ) with a dose-dense (DD) schedule in newly diagnosed glioblastoma (GBM).
        Neuro Oncol. 2011; 13: iii51
        • Singh D.
        • Chan J.M.
        • Zoppoli P.
        • et al.
        Transforming fusions of FGFR and TACC genes in human glioblastoma.
        Science. 2012; 337: 1231-1235
        • Ichimura K.
        • Pearson D.M.
        • Kocialkowski S.
        • et al.
        IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas.
        Neuro-Oncology. 2009; 11: 341-347
        • Christensen B.C.
        • Smith A.A.
        • Zheng S.
        • et al.
        DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma.
        J Natl Cancer Inst. 2011; 103: 143-153
        • Watanabe T.
        • Nobusawa S.
        • Kleihues P.
        • et al.
        IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas.
        Am J Pathol. 2009; 174: 1149-1153
        • Houillier C.
        • Wang X.
        • Kaloshi G.
        • et al.
        IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas.
        Neurology. 2010; 75: 1560-1566
        • Reifenberger J.
        • Reifenberger G.
        • Liu L.
        • et al.
        Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p.
        Am J Pathol. 1994; 145: 1175-1190
        • Cairncross G.
        • Jenkins R.
        Gliomas with 1p/19q codeletion: a.k.a. oligodendroglioma.
        Cancer J. 2008; 14: 352-357
        • Jenkins R.B.
        • Blair H.
        • Ballman K.V.
        • et al.
        A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma.
        Cancer Res. 2006; 66: 9852-9861
        • Griffin C.A.
        • Burger P.
        • Morsberger L.
        • et al.
        Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss.
        J Neuropathol Exp Neurol. 2006; 65: 988-994
        • Bettegowda C.
        • Agrawal N.
        • Jiao Y.
        • et al.
        Mutations in CIC and FUBP1 contribute to human oligodendroglioma.
        Science. 2011; 333: 1453-1455
        • Yip S.
        • Butterfield Y.S.
        • Morozova O.
        • et al.
        Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers.
        J Pathol. 2012; 226: 7-16
        • Cooper L.A.
        • Gutman D.A.
        • Long Q.
        • et al.
        The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas.
        PLoS One. 2010; 5: e12548
        • Jiao Y.
        • Killela P.J.
        • Reitman Z.J.
        • et al.
        Frequent ATRX, CIC, and FUBP1 mutations refine the classification of malignant gliomas.
        Oncotarget. 2012; 3: 709-722
        • Dubbink H.J.
        • Taal W.
        • van Marion R.
        • et al.
        IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide.
        Neurology. 2009; 73: 1792-1795
        • Lujambio A.
        • Ropero S.
        • Ballestar E.
        • et al.
        Genetic unmasking of an epigenetically silenced microRNA in human cancer cells.
        Cancer Res. 2007; 67: 1424-1429
        • Zhang Y.
        • Dutta A.
        • Abounader R.
        The role of microRNAs in glioma initiation and progression.
        Front Biosci. 2012; 17: 700-712
        • Calin G.A.
        • Sevignani C.
        • Dumitru C.D.
        • et al.
        Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.
        Proc Natl Acad Sci USA. 2004; 101: 2999-3004
        • He L.
        • He X.
        • Lim L.P.
        • et al.
        A microRNA component of the p53 tumour suppressor network.
        Nature. 2007; 447: 1130-1134
        • Dews M.
        • Homayouni A.
        • Yu D.
        • et al.
        Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster.
        Nat Genet. 2006; 38: 1060-1065
        • Zhou X.
        • Ren Y.
        • Moore L.
        • et al.
        Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status.
        Lab Invest. 2010; 90: 144-155
        • Papagiannakopoulos T.
        • Shapiro A.
        • Kosik K.S.
        MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells.
        Cancer Res. 2008; 68: 8164-8172
        • Ciafre S.A.
        • Galardi S.
        • Mangiola A.
        • et al.
        Extensive modulation of a set of microRNAs in primary glioblastoma.
        Biochem Biophys Res Commun. 2005; 334: 1351-1358
        • Gillies J.K.
        • Lorimer I.A.
        Regulation of p27Kip1 by miRNA 221/222 in glioblastoma.
        Cell Cycle. 2007; 6: 2005-2009
        • Lukiw W.J.
        • Cui J.G.
        • Li Y.Y.
        • et al.
        Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM).
        J Neurooncol. 2009; 91: 27-32
        • Huse J.T.
        • Brennan C.
        • Hambardzumyan D.
        • et al.
        The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo.
        Genes Dev. 2009; 23: 1327-1337
        • Kim H.
        • Huang W.
        • Jiang X.
        • et al.
        Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship.
        Proc Natl Acad Sci USA. 2010; 107: 2183-2188
        • Gabriely G.
        • Yi M.
        • Narayan R.S.
        • et al.
        Human glioma growth is controlled by microRNA-10b.
        Cancer Res. 2011; 71: 3563-3572
        • Lin J.
        • Teo S.
        • Lam D.H.
        • et al.
        MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme.
        Cell Death Dis. 2012; 3: e398
        • Silber J.
        • Jacobsen A.
        • Ozawa T.
        • et al.
        miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis.
        PLoS One. 2012; 7: e33844
        • Rao S.A.
        • Santosh V.
        • Somasundaram K.
        Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma.
        Mod Pathol. 2010; 23: 1404-1417
        • Roth P.
        • Wischhusen J.
        • Happold C.
        • et al.
        A specific miRNA signature in the peripheral blood of glioblastoma patients.
        J Neurochem. 2011; 118: 449-457
        • Kim T.M.
        • Huang W.
        • Park R.
        • et al.
        A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs.
        Cancer Res. 2011; 71: 3387-3399
        • Srinivasan S.
        • Patric I.R.P.
        • Somasundaram K.
        A ten-microRNA expression signature predicts survival in glioblastoma.
        PLoS One. 2011; 6: e17438
        • Lindor N.M.
        • McMaster M.L.
        • Lindor C.J.
        • et al.
        Concise handbook of familial cancer susceptibility syndromes—second edition.
        J Natl Cancer Inst Monogr. 2008; 2008: 1-93
        • Robertson L.B.
        • Armstrong G.N.
        • Olver B.D.
        • et al.
        Survey of familial glioma and role of germline p16INK4A/p14ARF and p53 mutation.
        Fam Cancer. 2010; 9: 413-421
        • Malmer B.
        • Gronberg H.
        • Bergenheim A.T.
        • et al.
        Familial aggregation of astrocytoma in northern Sweden: an epidemiological cohort study.
        Int J Cancer. 1999; 81: 366-370
        • Wrensch M.
        • Lee M.
        • Miike R.
        • et al.
        Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls.
        Am J Epidemiol. 1997; 145: 581-593
        • Malmer B.
        • Henriksson R.
        • Gronberg H.
        Familial brain tumours-genetics or environment? A nationwide cohort study of cancer risk in spouses and first-degree relatives of brain tumour patients.
        Int J Cancer. 2003; 106: 260-263
        • Malmer B.
        • Iselius L.
        • Holmberg E.
        • et al.
        Genetic epidemiology of glioma.
        Br J Cancer. 2001; 84: 429-434
        • de Andrade M.
        • Barnholtz J.S.
        • Amos C.I.
        • et al.
        Segregation analysis of cancer in families of glioma patients.
        Genet Epidemiol. 2001; 20: 258-270
        • Paunu N.
        • Lahermo P.
        • Onkamo P.
        • et al.
        A novel low-penetrance locus for familial glioma at 15q23∼q26.3.
        Cancer Res. 2002; 62: 3798-3802
        • Shete S.
        • Lau C.C.
        • Houlston R.S.
        • et al.
        Genome-wide high-density SNP linkage search for glioma susceptibility loci: results from the GLIOGENE consortium.
        Cancer Res. 2011; 71: 7568-7575
        • Wrensch M.
        • Jenkins R.B.
        • Chang J.S.
        • et al.
        Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility.
        Nat Genet. 2009; 41: 905-908
        • Shete S.
        • Hosking F.J.
        • Robertson L.B.
        • et al.
        Genome-wide association study identifies five susceptibility loci for glioma.
        Nat Genet. 2009; 41: 899-904
        • Schwartzbaum J.A.
        • Xiao Y.
        • Liu Y.
        • et al.
        Inherited variation in immune genes and pathways and glioblastoma risk.
        Carcinogenesis. 2010; 31: 1770-1777
        • Andersson U.
        • Schwartzbaum J.
        • Wiklund F.
        • et al.
        A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk.
        Acta Oncol. 2010; 49: 767-775
        • Sanson M.
        • Hosking F.J.
        • Shete S.
        • et al.
        Chromosome 7p11.2 (EGFR) variation influences glioma risk.
        Hum Mol Genet. 2011; 20: 2897-2904
        • Stacey S.N.
        • Sulem P.
        • Jonasdottir A.
        • et al.
        A germline variant in the TP53 polyadenylation signal confers cancer susceptibility.
        Nat Genet. 2011; 43: 1098-1103
        • Egan K.M.
        • Nabors L.B.
        • Olson J.J.
        • et al.
        Rare TP53 genetic variant associated with glioma risk and outcome.
        J Med Genet. 2012; 49: 420-421
        • Jenkins R.B.
        • Wrensch M.R.
        • Johnson D.
        • et al.
        Distinct germ line polymorphisms underlie glioma morphologic heterogeneity.
        Cancer Genet. 2011; 204: 13-18
        • Egan K.M.
        • Thompson R.C.
        • Nabors L.B.
        • et al.
        Cancer susceptibility variants and the risk of adult glioma in a US case-control study.
        J Neurooncol. 2011; 104: 535-542
        • Simon M.
        • Hosking F.J.
        • Marie Y.
        • et al.
        Genetic risk profiles identify different molecular etiologies for glioma.
        Clin Cancer Res. 2010; 16: 5252-5259
        • Jenkins R.B.
        • Xiao Y.
        • Sicotte H.
        • et al.
        A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation.
        Nat Genet. 2012; 44: 1122-1125
        • Yang H.
        • Dinney C.P.
        • Ye Y.
        • et al.
        Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer.
        Cancer Res. 2008; 68: 2530-2537
        • Sun Q.
        • Gu H.
        • Zeng Y.
        • et al.
        Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression.
        Cancer Sci. 2010; 101: 2241-2247
        • Yang R.
        • Schlehe B.
        • Hemminki K.
        • et al.
        A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk.
        Breast Cancer Res Treat. 2010; 121: 693-702