Myelodysplastic syndrome with a t(2;11)(p21;q23-24) and translocation breakpoint close to miR-125b-1

  • Jim Thorsen
    Correspondence
    Corresponding author.
    Affiliations
    Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway

    Center for Cancer Biomedicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Hege Vangstein Aamot
    Affiliations
    Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway

    Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Akershus University Hospital, Lørenskog, Norway
    Search for articles by this author
  • Roberta Roberto
    Affiliations
    Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway

    Center for Cancer Biomedicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Geir E. Tjønnfjord
    Affiliations
    Department of Hematology, Oslo University Hospital, Oslo, Norway
    Search for articles by this author
  • Francesca Micci
    Affiliations
    Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway

    Center for Cancer Biomedicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Sverre Heim
    Affiliations
    Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway

    Center for Cancer Biomedicine, University of Oslo, Oslo, Norway

    Institute of Clinical Medicine, University of Oslo, Oslo, Norway
    Search for articles by this author
Published:September 03, 2012DOI:https://doi.org/10.1016/j.cancergen.2012.06.003
      The upregulation of oncogenes and the formation of fusion genes are commonly observed in hematological malignancies with recurring balanced translocations. However, in some malignancies exhibiting balanced chromosomal rearrangements, neither oncogene deregulation nor generation of fusion genes appears to be involved, suggesting that other mechanisms are at play. In the rare myelodysplastic syndrome (MDS) containing a t(2;11)(p21;q23-24) translocation, breakpoints near a microRNA locus, miR-125b-1, in 11q24 have been suggested to be pathogenetically involved. Here we report the detailed mapping and sequencing of the breakpoint located only 2 kilobases from miR-125b-1 in an MDS patient with a t(2;11)(p21;q23-24).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aplan P.D.
        Causes of oncogenic chromosomal translocation.
        Trends Genet. 2006; 22: 46-55
      1. Mitelman F, Johansson B, Mertens F. Mitelman database of chromosome aberrations and gene fusions in cancer. Available at: http://cgap.nci.nih.gov/Chromosomes/Mitelman. Accessed on November 4, 2011.

        • Bousquet M.
        • Quelen C.
        • Rosati R.
        • et al.
        Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation.
        J Exp Med. 2008; 205: 2499-2506
        • Iorio M.V.
        • Croce C.M.
        MicroRNAs in cancer: small molecules with a huge impact.
        J Clin Oncol. 2009; 27: 5848-5856
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Cobb B.S.
        • Nesterova T.B.
        • Thompson E.
        • et al.
        T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer.
        J Exp Med. 2005; 201: 1367-1373
        • Li Q.J.
        • Chau J.
        • Ebert P.J.R.
        • et al.
        miR-181a is an intrinsic modulator of T cell sensitivity and selection.
        Cell. 2007; 129: 147-161
        • Thai T.H.
        • Calado D.P.
        • Casola S.
        • et al.
        Regulation of the germinal center response by microRNA-155.
        Science. 2007; 316: 604-608
        • O'Carroll D.
        • Mecklenbrauker I.
        • Das P.P.
        • et al.
        A Slicer-independent role for argonaute 2 in hematopoiesis and the microRNA pathway.
        Genes Dev. 2007; 21: 1999-2004
        • Zhou B.Y.
        • Wang S.
        • Mayr C.
        • et al.
        miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely.
        Proc Natl Acad Sci USA. 2007; 104: 7080-7085
        • Fazi F.
        • Rosa A.
        • Fatica A.
        • et al.
        A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBP alpha regulates human granulopoiesis.
        Cell. 2005; 123: 819-831
        • Johnnidis J.B.
        • Harris M.H.
        • Wheeler R.T.
        • et al.
        Regulation of progenitor cell proliferation and granulocyte function by microRNA-223.
        Nature. 2008; 451: 1125-1129
        • Calin G.A.
        • Sevignani C.
        • Dumitru C.D.
        • et al.
        Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.
        Proc Natl Acad Sci USA. 2004; 101: 2999-3004
        • Klein U.
        • Lia M.
        • Crespo M.
        • et al.
        The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia.
        Cancer Cell. 2010; 17: 28-40
        • Mu P.
        • Han Y.C.
        • Betel D.
        • et al.
        Genetic dissection of the miR-17 similar to 92 cluster of microRNAs in Myc-induced B-cell lymphomas.
        Genes Dev. 2009; 23: 2806-2811
        • O'Connell R.M.
        • Rao D.S.
        • Chaudhuri A.A.
        • et al.
        Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder.
        J Exp Med. 2008; 205: 585-594
        • Czepulkowski B.
        • Gibbons B.
        Cytogenetics in acute lymphoblastic leukemia.
        in: Rooney D.E. Human cytogenetics: malignancy and acquired abnormalities. Oxford University Press, New York2001: 57-85
      2. Shaffer L.G. Slovak M.L. Campbell L.J. ISCN 2009: an international system for human cytogenetic nomenclature. Karger, Basel2009
      3. BACPAC Resources. Available at: http://bacpac.chori.org. Accessed on November 4, 2011.

        • Sambrook J.
        • Russel D.
        Molecular cloning: a laboratory manual.
        Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY2001
        • Nyquist K.B.
        • Thorsen J.
        • Zeller B.
        • et al.
        Identification of the TAF15-ZNF384 fusion gene in two new cases of acute lymphoblastic leukemia with a t(12;17)(p13;q12).
        Cancer Genet. 2011; 204: 147-152
        • Kalendar R.
        • Lee D.
        • Schulman A.
        FastPCR software for PCR primer and probe design and repeat search.
        Genes Genom Genomics. 2009; 3: 1-14
        • Altschul S.F.
        • Madden T.L.
        • Schaffer A.A.
        • et al.
        Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
        Nucleic Acids Res. 1997; 25: 3389-3402
      4. The UCSC genome browser gateway. Available at: http://genome.ucsc.edu/cgi-bin/hgGateway. Accessed on December 6, 2011.

        • Chen S.Y.
        • Wang Y.L.
        • Telen M.J.
        • et al.
        The genomic analysis of erythrocyte microRNA expression in sickle cell diseases.
        Plos One. 2008; 3
      5. Database of genomic variants. Available at: http://projects.tcag.ca/variation/. Accessed on March 15, 2012.

      6. International Standards for Cytogenomic Arrays database. Available at: https://www.iscaconsortium.org. Accessed on March 15, 2012.

        • Chapiro E.
        • Russell L.J.
        • Struski S.
        • et al.
        A new recurrent translocation t(11;14)(q24;q32) involving [email protected] and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia.
        Leukemia. 2010; 24: 1362-1364
        • Enomoto Y.
        • Kitaura J.
        • Hatakeyama K.
        • et al.
        Emu/miR-125b transgenic mice develop lethal B-cell malignancies.
        Leukemia. 2011; 25: 1849-1856
        • Klusmann J.H.
        • Li Z.
        • Bohmer K.
        • et al.
        miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia.
        Genes Dev. 2010; 24: 478-490
        • Gefen N.
        • Binder V.
        • Zaliova M.
        • et al.
        Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53.
        Leukemia. 2010; 24: 89-96
        • Bousquet M.
        • Harris M.H.
        • Zhou B.
        • et al.
        MicroRNA miR-125b causes leukemia.
        Proc Natl Acad Sci USA. 2010; 107: 21558-21563
        • O'Connell R.M.
        • Chaudhuri A.A.
        • Rao D.S.
        • et al.
        MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output.
        Proc Natl Acad Sci USA. 2010; 107: 14235-14240
        • Chaudhuri A.A.
        • So A.Y.
        • Mehta A.
        • et al.
        Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A.
        Proc Natl Acad Sci USA. 2012; 109: 4233-4238
        • Surdziel E.
        • Cabanski M.
        • Dallmann I.
        • et al.
        Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways.
        Blood. 2011; 117: 4338-4348