Advertisement

The emerging role of long non-coding RNAs in endometrial cancer

Published:September 13, 2016DOI:https://doi.org/10.1016/j.cancergen.2016.09.005

      Highlights

      • Non-coding part of the transcriptome is involved in gynecological cancer pathology.
      • Expression of long intervening non-coding RNAs is perturbed in endometrial cancer.
      • HOTAIR lincRNA might serve as a prognostic molecular marker for endometrial cancer.
      The human genome is pervasively transcribed and approximately 98% of the genome is non-coding. Long non-coding RNAs (lncRNAs) are a heterogeneous group of RNA transcripts that are >200 nucleotides in length with minimal to no protein-coding potential. Similar to proteins, lncRNAs have important biological functions in both normal cells and disease states including many types of cancer. This review summarizes recent advances in our understanding of lncRNAs in cancer biology and highlights the potential for lncRNA as diagnostic biomarkers and therapeutics. Herein we focus on the poorly understood role of lncRNAs in endometrial cancer, the most common gynecologic malignancy in the developed world.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2016.
        CA Cancer J Clin. 2016; 66: 7-30
        • Ferlay J.
        • Soerjomataram I.
        • Dikshit R.
        • et al.
        Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.
        Int J Cancer. 2015; 136: E359-E386
        • Karageorgi S.
        • Hankinson S.E.
        • Kraft P.
        • et al.
        Reproductive factors and postmenopausal hormone use in relation to endometrial cancer risk in the Nurses' Health Study cohort 1976–2004.
        Int J Cancer. 2010; 126: 208-216
        • Renehan A.G.
        • Tyson M.
        • Egger M.
        • et al.
        Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies.
        Lancet. 2008; 371: 569-578
        • Grady D.
        • Gebretsadik T.
        • Kerlikowske K.
        • et al.
        Hormone replacement therapy and endometrial cancer risk: a meta-analysis.
        Obstet Gynecol. 1995; 85: 304-313
        • Friberg E.
        • Mantzoros C.S.
        • Wolk A.
        Diabetes and risk of endometrial cancer: a population-based prospective cohort study.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 276-280
        • Yang H.P.
        • Cook L.S.
        • Weiderpass E.
        • et al.
        Infertility and incident endometrial cancer risk: a pooled analysis from the epidemiology of endometrial cancer consortium (E2C2).
        Br J Cancer. 2015; 112: 925-933
        • Doll A.
        • Abal M.
        • Rigau M.
        • et al.
        Novel molecular profiles of endometrial cancer—new light through old windows.
        J Steroid Biochem Mol Biol. 2008; 108: 221-229
        • Bokhman J.V.
        Two pathogenetic types of endometrial carcinoma.
        Gynecol Oncol. 1983; 15: 10-17
        • Sherman M.E.
        Theories of endometrial carcinogenesis: a multidisciplinary approach.
        Mod Pathol. 2000; 13: 295-308
        • Srijaipracharoen S.
        • Tangjitgamol S.
        • Tanvanich S.
        • et al.
        Expression of ER, PR, and Her-2/neu in endometrial cancer: a clinicopathological study.
        Asian Pac J Cancer Prev. 2010; 11: 215-220
        • Fukuda K.
        • Mori M.
        • Uchiyama M.
        • et al.
        Prognostic significance of progesterone receptor immunohistochemistry in endometrial carcinoma.
        Gynecol Oncol. 1998; 69: 220-225
        • Zhang Y.
        • Zhao D.
        • Gong C.
        • et al.
        Prognostic role of hormone receptors in endometrial cancer: a systematic review and meta-analysis.
        World J Surg Oncol. 2015; 13: 208
        • Cheung L.W.
        • Hennessy B.T.
        • Li J.
        • et al.
        High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability.
        Cancer Discov. 2011; 1: 170-185
        • Djordjevic B.
        • Hennessy B.T.
        • Li J.
        • et al.
        Clinical assessment of PTEN loss in endometrial carcinoma: immunohistochemistry outperforms gene sequencing.
        Mod Pathol. 2012; 25: 699-708
        • Byron S.A.
        • Gartside M.
        • Powell M.A.
        • et al.
        FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features.
        PLoS ONE. 2012; 7 (e30801)
        • Fukuchi T.
        • Sakamoto M.
        • Tsuda H.
        • et al.
        Beta-catenin mutation in carcinoma of the uterine endometrium.
        Cancer Res. 1998; 58: 3526-3528
        • Llauradó M.
        • Ruiz A.
        • Majem B.
        • et al.
        Molecular bases of endometrial cancer: new roles for new actors in the diagnosis and the therapy of the disease.
        Mol Cell Endocrinol. 2012; 358: 244-255
        • Mutter G.L.
        • Lin M.C.
        • Fitzgerald J.T.
        • et al.
        Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers.
        J Natl Cancer Inst. 2000; 92: 924-930
        • Kandoth C.
        • Schultz N.
        • Cherniack A.D.
        • et al.
        Integrated genomic characterization of endometrial carcinoma.
        Nature. 2013; 497: 67-73
        • Boruta 2nd, D.M.
        • Gehrig P.A.
        • Fader A.N.
        • et al.
        Management of women with uterine papillary serous cancer: a Society of Gynecologic Oncology (SGO) review.
        Gynecol Oncol. 2009; 115: 142-153
        • Mendivil A.
        • Schuler K.M.
        • Gehrig P.A.
        Non-endometrioid adenocarcinoma of the uterine corpus: a review of selected histological subtypes.
        Cancer Control. 2009; 16: 46-52
        • Olawaiye A.B.
        • Boruta 2nd., D.M.
        Management of women with clear cell endometrial cancer: a Society of Gynecologic Oncology (SGO) review.
        Gynecol Oncol. 2009; 113: 277-283
        • Rose P.G.
        Endometrial carcinoma.
        N Engl J Med. 1996; 335: 640-649
        • Lax S.F.
        • Kendall B.
        • Tashiro H.
        • et al.
        The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways.
        Cancer. 2000; 88: 814-824
        • Lax S.F.
        Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification.
        Virchows Arch. 2004; 444: 213-223
        • Santin A.D.
        • Bellone S.
        • Van Stedum S.
        • et al.
        Determination of HER2/neu status in uterine serous papillary carcinoma: comparative analysis of immunohistochemistry and fluorescence in situ hybridization.
        Gynecol Oncol. 2005; 98: 24-30
        • Bansal N.
        • Yendluri V.
        • Wenham R.M.
        The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies.
        Cancer Control. 2009; 16: 8-13
        • Salvesen H.B.
        • Kumar R.
        • Stefansson I.
        • et al.
        Low frequency of BRAF and CDKN2A mutations in endometrial cancer.
        Int J Cancer. 2005; 115: 930-934
        • Yalta T.
        • Atay L.
        • Atalay F.
        • et al.
        E-cadherin expression in endometrial malignancies: comparison between endometrioid and non-endometrioid carcinomas.
        J Int Med Res. 2009; 37: 163-168
        • Llobet D.
        • Pallares J.
        • Yeramian A.
        • et al.
        Molecular pathology of endometrial carcinoma: practical aspects from the diagnostic and therapeutic viewpoints.
        J Clin Pathol. 2009; 62: 777-785
        • Creasman W.
        Revised FIGO staging for carcinoma of the endometrium.
        Int J Gynaecol Obstet. 2009; 105: 109
        • Pecorelli S.
        Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium.
        Int J Gynaecol Obstet. 2009; 105: 103-104
        • Benedet J.L.
        • Bender H.
        • Jones 3rd, H.
        • et al.
        FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology.
        Int J Gynaecol Obstet. 2000; 70: 209-262
        • Creasman W.T.
        • Odicino F.
        • Maisonneuve P.
        • et al.
        Carcinoma of the corpus uteri. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer.
        Int J Gynaecol Obstet. 2006; 95: S105-S143
        • Sorosky J.I.
        Endometrial cancer.
        Obstet Gynecol. 2012; 120: 383-397
        • Colombo N.
        • Preti E.
        • Landoni F.
        • et al.
        Endometrial cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2013; 24: vi33-vi38
        • Djebali S.
        • Davis C.A.
        • Merkel A.
        • et al.
        Landscape of transcription in human cells.
        Nature. 2012; 489: 101-108
        • Carninci P.
        • Kasukawa T.
        • Katayama S.
        • et al.
        The transcriptional landscape of the mammalian genome.
        Science. 2005; 309: 1559-1563
        • Szymanski M.
        • Barciszewska M.Z.
        • Erdmann V.A.
        • et al.
        A new frontier for molecular medicine: noncoding RNAs.
        Biochim Biophys Acta. 2005; 1756: 65-75
        • Zhao S.
        • Fung-Leung W.-P.
        • Bittner A.
        • et al.
        Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells.
        PLoS ONE. 2014; 9 (e78644)
        • Ramaswami G.
        • Zhang R.
        • Piskol R.
        • et al.
        Identifying RNA editing sites using RNA sequencing data alone.
        Nat Methods. 2013; 10: 128-132
        • Wang Z.
        • Gerstein M.
        • Snyder M.
        RNA-seq: a revolutionary tool for transcriptomics.
        Nat Rev Genet. 2009; 10: 57-63
        • Mills J.D.
        • Janitz M.
        Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases.
        Neurobiol Aging. 2012; 33 (e11-e24): 1012
        • Yandell M.
        • Ence D.
        A beginner's guide to eukaryotic genome annotation.
        Nat Rev Genet. 2012; 13: 329-342
        • Trapnell C.
        • Roberts A.
        • Goff L.
        • et al.
        Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.
        Nat Protocols. 2012; 7: 562-578
        • Kapranov P.
        • Cheng J.
        • Dike S.
        • et al.
        RNA maps reveal new RNA classes and a possible function for pervasive transcription.
        Science. 2007; 316: 1484-1488
        • Ravasi T.
        • Suzuki H.
        • Pang K.C.
        • et al.
        Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome.
        Genome Res. 2006; 16: 11-19
        • Cabili M.N.
        • Trapnell C.
        • Goff L.
        • et al.
        Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.
        Genes Dev. 2011; 25: 1915-1927
        • Mercer T.R.
        • Dinger M.E.
        • Mattick J.S.
        Long non-coding RNAs: insights into functions.
        Nat Rev Genet. 2009; 10: 155-159
        • Harrow J.
        • Frankish A.
        • Gonzalez J.M.
        • et al.
        GENCODE: the reference human genome annotation for The ENCODE Project.
        Genome Res. 2012; 22: 1760-1774
        • Hrdlickova B.
        • de Almeida R.C.
        • Borek Z.
        • et al.
        Genetic variation in the non-coding genome: involvement of micro-RNAs and long non-coding RNAs in disease.
        Biochi Biophys Acta. 2014; 1842: 1910-1922
        • Wang K.C.
        • Chang H.Y.
        Molecular mechanisms of long noncoding RNAs.
        Mol Cell. 2011; 43: 904-914
        • Loewer S.
        • Cabili M.N.
        • Guttman M.
        • et al.
        Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells.
        Nat Genet. 2010; 42: 1113-1117
        • Huang J.
        • Zhou N.
        • Watabe K.
        • et al.
        Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1).
        Cell Death Dis. 2014; 5: e1008
        • Wang F.
        • Li X.
        • Xie X.
        • et al.
        UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion.
        FEBS Lett. 2008; 582: 1919-1927
        • Kotake Y.
        • Nakagawa T.
        • Kitagawa K.
        • et al.
        Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene.
        Oncogene. 2011; 30
        • Kloosterman W.P.
        • Plasterk R.H.A.
        The diverse functions of MicroRNAs in animal development and disease.
        Dev Cell. 2006; 11: 441-450
        • Filipowicz W.
        • Bhattacharyya S.N.
        • Sonenberg N.
        Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?.
        Nat Rev Genet. 2008; 9: 102-114
        • Eulalio A.
        • Huntzinger E.
        • Izaurralde E.
        Getting to the root of miRNA-mediated gene silencing.
        Cell. 2008; 132: 9-14
        • Salmena L.
        • Poliseno L.
        • Tay Y.
        • et al.
        A ceRNA hypothesis: the Rosetta stone of a hidden RNA language?.
        Cell. 2011; 146: 353-358
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Poliseno L.
        • Salmena L.
        • Zhang J.
        • et al.
        A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.
        Nature. 2010; 465: 1033-1038
        • Balakirev E.S.
        • Ayala F.J.
        Pseudogenes: are they “junk” or functional DNA?.
        Annu Rev Genet. 2003; 37: 123-151
        • Mighell A.J.
        • Smith N.R.
        • Robinson P.A.
        • et al.
        Vertebrate pseudogenes.
        FEBS Lett. 2000; 468: 109-114
        • Echols N.
        • Harrison P.
        • Balasubramanian S.
        • et al.
        Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes.
        Nucleic Acids Res. 2002; 30: 2515-2523
        • Huang G.
        • Wu X.
        • Li S.
        • et al.
        The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer.
        Sci Rep. 2016; 6: 26524
        • Chen B.J.
        • Mills J.D.
        • Takenaka K.
        • et al.
        Characterization of circular RNAs landscape in multiple system atrophy brain.
        J Neurochem. 2016; https://doi.org/10.1111/jnc.13752
        • Li F.
        • Zhang L.
        • Li W.
        • et al.
        Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway.
        Oncotarget. 2015; 6: 6001-6013
        • Huang G.
        • Zhu H.
        • Shi Y.
        • et al.
        cir-ITCH Plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway.
        PLoS ONE. 2015; 10 (e0131225)
        • Amaral P.P.
        • Clark M.B.
        • Gascoigne D.K.
        • et al.
        lncRNAdb: a reference database for long noncoding RNAs.
        Nucleic Acids Res. 2011; 39: D146-D151
        • Luk A.C.
        • Gao H.
        • Xiao S.
        • et al.
        GermlncRNA: a unique catalogue of long non-coding RNAs and associated regulations in male germ cell development.
        Database (Oxford). 2015; 2015: bav044
        • Quek X.C.
        • Thomson D.W.
        • Maag J.L.
        • et al.
        lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs.
        Nucleic Acids Res. 2015; 43: D168-D173
        • Volders P.J.
        • Helsens K.
        • Wang X.
        • et al.
        LNCipedia: a database for annotated human lncRNA transcript sequences and structures.
        Nucleic Acids Res. 2013; 41: D246-D251
        • Fritah S.
        • Niclou S.P.
        • Azuaje F.
        Databases for lncRNAs: a comparative evaluation of emerging tools.
        RNA. 2014; 20: 1655-1665
        • Guffanti A.
        • Iacono M.
        • Pelucchi P.
        • et al.
        A transcriptional sketch of a primary human breast cancer by 454 deep sequencing.
        BMC Genomics. 2009; 10: 163
        • Ren S.
        • Liu Y.
        • Xu W.
        • et al.
        Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer.
        J Urol. 2013; 190: 2278-2287
        • Lai M.C.
        • Yang Z.
        • Zhou L.
        • et al.
        Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation.
        Med Oncol. 2012; 29: 1810-1816
        • Guo F.
        • Li Y.
        • Liu Y.
        • et al.
        Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion.
        Acta Biochim Biophys Sin (Shanghai). 2010; 42: 224-229
        • Zhao Y.
        • Yang Y.
        • Trovik J.
        • et al.
        A novel wnt regulatory axis in endometrioid endometrial cancer.
        Cancer Res. 2014; 74: 5103-5117
        • Hajjari M.
        • Salavaty A.
        HOTAIR: an oncogenic long non-coding RNA in different cancers.
        Cancer Biol Med. 2015; 12: 1-9
        • He X.
        • Bao W.
        • Li X.
        • et al.
        The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis.
        Int J Mol Med. 2014; 33: 325-332
        • Huang L.
        • Liao L.M.
        • Liu A.W.
        • et al.
        Overexpression of long noncoding RNA HOTAIR predicts a poor prognosis in patients with cervical cancer.
        Arch Gynecol Obstet. 2014; 290: 717-723
        • Gupta R.A.
        • Shah N.
        • Wang K.C.
        • et al.
        Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.
        Nature. 2010; 464: 1071-1076
        • Kogo R.
        • Shimamura T.
        • Mimori K.
        • et al.
        Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers.
        Cancer Res. 2011; 71: 6320-6326
        • Lanz R.B.
        • McKenna N.J.
        • Onate S.A.
        • et al.
        A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex.
        Cell. 1999; 97: 17-27
        • Lanz R.B.
        • Chua S.S.
        • Barron N.
        • et al.
        Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo.
        Mol Cell Biol. 2003; 23: 7163-7176
        • Akrami R.
        • Jacobsen A.
        • Hoell J.
        • et al.
        Comprehensive analysis of long non-coding RNAs in ovarian cancer reveals global patterns and targeted DNA amplification.
        PLoS ONE. 2013; 8 (e80306)
        • Gabory A.
        • Jammes H.
        • Dandolo L.
        The H19 locus: role of an imprinted non-coding RNA in growth and development.
        Bioessays. 2010; 32: 473-480
        • Zemel S.
        • Bartolomei M.S.
        • Tilghman S.M.
        Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2.
        Nat Genet. 1992; 2: 61-65
        • Cui H.
        • Onyango P.
        • Brandenburg S.
        • et al.
        Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2.
        Cancer Res. 2002; 62: 6442-6446
        • Verkerk A.J.
        • Ariel I.
        • Dekker M.C.
        • et al.
        Unique expression patterns of H19 in human testicular cancers of different etiology.
        Oncogene. 1997; 14: 95-107
        • Dugimont T.
        • Curgy J.J.
        • Wernert N.
        • et al.
        The H19 gene is expressed within both epithelial and stromal components of human invasive adenocarcinomas.
        Biol Cell. 1995; 85: 117-124
        • Tanos V.
        • Prus D.
        • Ayesh S.
        • et al.
        Expression of the imprinted H19 oncofetal RNA in epithelial ovarian cancer.
        Eur J Obstet Gynecol Reprod Biol. 1999; 85: 7-11
        • Tanos V.
        • Ariel I.
        • Prus D.
        • et al.
        H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium.
        Int J Gynecol Cancer. 2004; 14: 521-525
        • Ratajczak M.Z.
        Igf2-H19, an imprinted tandem Yin-Yanggene and its emerging role in development, proliferation of pluripotent stem cells, senescence and cancerogenesis.
        J Stem Cell Res Ther. 2012; 2: 108
        • Yan L.
        • Zhou J.
        • Gao Y.
        • et al.
        Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation.
        Oncogene. 2015; 34: 3076-3084
        • Tsang W.P.
        • Ng E.K.
        • Ng S.S.
        • et al.
        Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer.
        Carcinogenesis. 2010; 31: 350-358
        • Xin W.
        • Liu X.
        • Ding J.
        • et al.
        Long non-coding RNA derived miR-205-5p modulates human endometrial cancer by targeting PTEN.
        Am J Transl Res. 2015; 7: 2433-2441
        • Baldinu P.
        • Cossu A.
        • Manca A.
        • et al.
        Identification of a novel candidate gene, CASC2, in a region of common allelic loss at chromosome 10q26 in human endometrial cancer.
        Hum Mutat. 2004; 23: 318-326
        • Baldinu P.
        • Cossu A.
        • Manca A.
        • et al.
        CASC2a gene is down-regulated in endometrial cancer.
        Anticancer Res. 2007; 27: 235-243
        • Peiffer S.L.
        • Herzog T.J.
        • Tribune D.J.
        • et al.
        Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers.
        Cancer Res. 1995; 55: 1922-1926
        • Sonoda G.
        • du Manoir S.
        • Godwin A.K.
        • et al.
        Detection of DNA gains and losses in primary endometrial carcinomas by comparative genomic hybridization.
        Genes Chromosomes Cancer. 1997; 18: 115-125
        • Wang P.
        • Liu Y.H.
        • Yao Y.L.
        • et al.
        Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21.
        Cell Signal. 2015; 27: 275-282
        • He X.
        • Liu Z.
        • Su J.
        • et al.
        Low expression of long noncoding RNA CASC2 indicates a poor prognosis and regulates cell proliferation in non-small cell lung cancer.
        Tumor Biol. 2016; : 9503-9510
        • Zhai W.
        • Li X.
        • Wu S.
        • et al.
        Microarray expression profile of lncRNAs and the upregulated ASLNC04080 lncRNA in human endometrial carcinoma.
        Int J Oncol. 2015; 46: 2125-2137
        • Yang L.
        • Zhang J.
        • Jiang A.
        • et al.
        Expression profile of long non-coding RNAs is altered in endometrial cancer.
        Int J Clin Exp Med. 2015; 8: 5010-5021
        • You X.
        • Vlatkovic I.
        • Babic A.
        • et al.
        Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity.
        Nat Neurosci. 2015; 18: 603-610
        • Li Y.
        • Zheng Q.
        • Bao C.
        • et al.
        Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis.
        Cell Res. 2015; 25: 981-984
        • Bachmayr-Heyda A.
        • Reiner A.T.
        • Auer K.
        • et al.
        Correlation of circular RNA abundance with proliferation—exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues.
        Sci Rep. 2015; 5: 8057