Advertisement
Mini-Review| Volume 228, P159-168, December 2018

Download started.

Ok

Analysis of circulating tumor DNA in breast cancer as a diagnostic and prognostic biomarker

      Highlights

      • Summarization of methods of identification of ctDNA.
      • Diagnostic characterization of ctDNA in breast cancer.
      • Utility of ctDNA in monitoring of disease progression and response to therapy in breast cancer.

      Abstract

      Despite all the advances in diagnosis and treatment of breast cancer, a large number of patients suffer from late diagnosis or recurrence of their disease. Current available imaging modalities do not reveal micrometastasis and tumor biopsy is an invasive method to detect early stage or recurrent cancer, signifying the need for an inexpensive, non-invasive diagnostic modality. Cell-free tumor DNA (ctDNA) has been tried for early detection and targeted therapy of breast cancer, but its diagnostic and prognostic utility is still under investigation. This review summarizes the existing evidence on the use of ctDNA specifically in breast cancer, including detection methods, diagnostic accuracy, role in genetics and epigenetics evaluation of the tumor, and comparison with other biomarkers. Current evidence suggests that increasing levels of ctDNA in breast cancer can be of significant diagnostic value for early detection of breast cancer although the sensitivity and specificity of the methods is still suboptimal. Additionally, ctDNA allows for characterizing the tumor in a non-invasive way and monitor the response to therapy, although discordance of ctDNA results with direct biopsy (i.e. due to tumor heterogeneity) is still considered a notable limitation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R
        • Ma J
        • Zou Z
        • Jemal A
        Cancer statistics.
        CA Cancer J Clin. 2014; 64: 9-29https://doi.org/10.3322/caac.21208
        • Burstein HJ
        • Winer EP
        Primary care for survivors of breast cancer.
        N Engl J Med. 2000; 343: 1086-1094https://doi.org/10.1056/NEJM200010123431506
        • Coughlin SS
        • Ekwueme DU
        Breast cancer as a global health concern.
        Cancer Epidemiol. 2009; 33: 315-318https://doi.org/10.1016/j.canep.2009.10.003
        • Li CI
        • Malone KE
        • Daling JR
        Differences in breast cancer stage, treatment, and survival by race and ethnicity.
        Arch Intern Med. 2003; 163: 49-56
        • Vetto JT
        • Luoh SW
        • Naik A
        Breast cancer in premenopausal women.
        Curr Probl Surg. 2009; 46 (S0011-3840(09)00104-X [pii]10.1067/j.cpsurg.2009.07.002): 944-1004
        • Karrison TG
        • Ferguson DJ
        • Meier P
        Dormancy of mammary carcinoma after mastectomy.
        J Natl Cancer Inst. 1999; 91: 80-85
        • Schapira DV
        • Urban N
        A minimalist policy for breast cancer surveillance.
        JAMA. 1991; 265: 380-382
        • Saphner T
        • Tormey DC
        • Gray R
        Annual hazard rates of recurrence for breast cancer after primary therapy.
        J Clin Oncol. 1996; 14: 2738-2746
        • Cheng L
        • Swartz MD
        • Zhao H
        • Kapadia AS
        • Lai D
        • Rowan PJ
        • et al.
        Hazard of Recurrence among women after primary breast cancer treatment–a 10-year follow-up using data from SEER-medicare.
        Cancer Epidemiol Biomarkers Prev. 2012; 21: 800-809https://doi.org/10.1158/1055-9965.EPI-11-1089
        • Brewster AM
        • Hortobagyi GN
        • Broglio KR
        • Kau SW
        • Santa-Maria CA
        • Arun B
        • et al.
        Residual risk of breast cancer recurrence 5 years after adjuvant therapy.
        J Natl Cancer Inst. 2008; 100: 1179-1183https://doi.org/10.1093/jnci/djn233
        • Nelson HD
        • Tyne K
        • Naik A
        • Bougatsos C
        • Chan B
        • Nygren P
        • et al.
        Screening for breast cancer: a systematic review to update the 2009 U.S. Preventive Services Task Force Recommendation.
        2009 (Rockville, MD)
        • Nelson HD
        • Cantor A
        • Humphrey L
        • Fu R
        • Pappas M
        • Daeges M
        • et al.
        Screening for breast cancer: a systematic review to update the 2009 U.S. Preventive Services Task Force Recommendation.
        2016 (Rockville, MD)
        • Murray C
        Tumour dormancy: not so sleepy after all.
        Nat Med. 1995; 1: 117-118
        • Braun S
        • Vogl FD
        • Naume B
        • Janni W
        • Osborne MP
        • Coombes RC
        • et al.
        A pooled analysis of bone marrow micrometastasis in breast cancer.
        N Engl J Med. 2005; 353: 793-802https://doi.org/10.1056/NEJMoa050434
        • Mansi J
        • Morden J
        • Bliss JM
        • Neville M
        • Coombes RC
        Bone marrow micrometastases in early breast cancer-30-year outcome.
        Br J Cancer. 2016; 114: 243-247https://doi.org/10.1038/bjc.2015.447
        • Lambrechts AC
        • Bosma AJ
        • Klaver SG
        • Top B
        • Perebolte L
        • van't Veer LJ
        • et al.
        Comparison of immunocytochemistry, reverse transcriptase polymerase chain reaction, and nucleic acid sequence-based amplification for the detection of circulating breast cancer cells.
        Breast Cancer Res Treat. 1999; 56: 219-231
        • Huang ZH
        • Li LH
        • Hua D
        Quantitative analysis of plasma circulating DNA at diagnosis and during follow-up of breast cancer patients.
        Cancer Lett. 2006; 243: 64-70https://doi.org/10.1016/j.canlet.2005.11.027
        • Cheung MC
        • Goldberg JD
        • Kan YW
        Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood.
        Nat Genet. 1996; 14: 264-268https://doi.org/10.1038/ng1196-264
        • Bianchi DW
        • Flint AF
        • Pizzimenti MF
        • Knoll JH
        • Latt SA
        Isolation of fetal DNA from nucleated erythrocytes in maternal blood.
        Proc Natl Acad Sci USA. 1990; 87: 3279-3283
        • Lo YM
        • Corbetta N
        • Chamberlain PF
        • Rai V
        • Sargent IL
        • Redman CW
        • et al.
        Presence of fetal DNA in maternal plasma and serum.
        Lancet. 1997; 350: 485-487https://doi.org/10.1016/S0140-6736(97)02174-0
        • Lo YM
        • Chiu RW
        Prenatal diagnosis: progress through plasma nucleic acids.
        Nat Rev Genet. 2007; 8: 71-77https://doi.org/10.1038/nrg1982
        • Chiu RWK
        • Chan KCA
        • Gao Y
        • Lau VYM
        • Zheng W
        • Leung TY
        • et al.
        Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma.
        Proc Natl Acad Sci USA. 2008; 105: 20458-20463https://doi.org/10.1073/pnas.0810641105
        • Fan HC
        • Blumenfeld YJ
        • Chitkara U
        • Hudgins L
        • Quake SR
        Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood.
        Proc Natl Acad Sci USA. 2008; 105: 16266-16271https://doi.org/10.1073/pnas.0808319105
        • Zimmermann B
        • Hill M
        • Gemelos G
        • Demko Z
        • Banjevic M
        • Baner J
        • et al.
        Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci.
        Prenat Diagn. 2012; 32: 1233-1241https://doi.org/10.1002/pd.3993
        • Hannafon BN
        • Ding WQ
        Intercellular communication by exosome-derived microRNAs in cancer.
        Int J Mol Sci. 2013; 14: 14240-14269https://doi.org/10.3390/ijms140714240
        • van der Vaart M
        • Pretorius PJ
        Circulating DNA. Its origin and fluctuation.
        Ann NY Acad Sci. 2008; 1137: 18-26https://doi.org/10.1196/annals.1448.022
        • Keller S
        • Konig AK
        • Marme F
        • Runz S
        • Wolterink S
        • Koensgen D
        • et al.
        Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes.
        Cancer Lett. 2009; 278: 73-81https://doi.org/10.1016/j.canlet.2008.12.028
        • Leon SA
        • Shapiro B
        • Sklaroff DM
        • Yaros MJ
        Free DNA in the serum of cancer patients and the effect of therapy.
        Cancer Res. 1977; 37: 646-650
        • Stroun M
        • Anker P
        • Lyautey J
        • Lederrey C
        • Maurice PA
        Isolation and characterization of DNA from the plasma of cancer patients.
        Eur J Cancer Clin Oncol. 1987; 23: 707-712
        • Holmgren L
        • O'Reilly MS
        • Folkman J
        Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression.
        Nat Med. 1995; 1: 149-153
        • Wikman H
        • Vessella R
        • Pantel K
        Cancer micrometastasis and tumour dormancy.
        APMIS. 2008; 116: 754-770https://doi.org/10.1111/j.1600-0463.2008.01033.x
        • Nicola M-HA
        • Bizon R
        • Machado JJS
        • Sollero T
        • Rodarte RS
        • Nobre JS
        • et al.
        Breast cancer micrometastases: different interactions of carcinoma cells with normal and cancer patients’ bone marrow stromata.
        Clin Exp Metastasis. 2003; 20: 471-479
        • Bettegowda C
        • Sausen M
        • Leary RJ
        • Kinde I
        • Wang Y
        • Agrawal N
        • et al.
        Detection of circulating tumor DNA in early- and late-stage human malignancies.
        Sci Transl Med. 2014; 6: 224ra24https://doi.org/10.1126/scitranslmed.3007094
        • Giacona MB
        • Ruben GC
        • Iczkowski KA
        • Roos TB
        • Porter DM
        • Sorenson GD
        Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls.
        Pancreas. 1998; 17: 89-97
        • Gormally E
        • Caboux E
        • Vineis P
        • Hainaut P
        Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance.
        Mutat Res. 2007; 635: 105-117https://doi.org/10.1016/j.mrrev.2006.11.002
        • Jahr S
        • Hentze H
        • Englisch S
        • Hardt D
        • Fackelmayer FO
        • Hesch RD
        • et al.
        DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells.
        Cancer Res. 2001; 61: 1659-1665
      1. Voytsitskiy VE, Tkachuk VA, Laktionov PP. Circulating nucleic acids in serum and plasma – CNAPS IX 2016;924:47–51. doi:10.1007/978-3-319-42044-8.

        • Agostini M
        • Enzo MV
        • Bedin C
        • Belardinelli V
        • Goldin E
        • Del Bianco P
        • et al.
        Circulating cell-free DNA: a promising marker of regional lymph node metastasis in breast cancer patients.
        Cancer Biomark. 2012; 11: 89-98https://doi.org/10.3233/CBM-2012-0263
        • Gao Y-J
        • He Y-J
        • Yang Z-L
        • Shao H-Y
        • Zuo Y
        • Bai Y
        • et al.
        Increased integrity of circulating cell-free DNA in plasma of patients with acute leukemia.
        Clin Chem Lab Med. 2010; 48: 1651-1656https://doi.org/10.1515/CCLM.2010.311
        • Feng J
        • Gang F
        • Li X
        • Jin T
        • Houbao H
        • Yu C
        • et al.
        Plasma cell-free DNA and its DNA integrity as biomarker to distinguish prostate cancer from benign prostatic hyperplasia in patients with increased serum prostate-specific antigen.
        Int Urol Nephrol. 2013; 45: 1023-1028https://doi.org/10.1007/s11255-013-0491-2
        • Hauser S
        • Zahalka T
        • Ellinger J
        • Fechner G
        • Heukamp LC
        • Von Ruecker A
        • et al.
        Cell-free circulating DNA: diagnostic value in patients with renal cell cancer.
        Anticancer Res. 2010; 30: 2785-2789
        • Madhavan D
        • Wallwiener M
        • Bents K
        • Zucknick M
        • Nees J
        • Schott S
        • et al.
        Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis.
        Breast Cancer Res Treat. 2014; 146: 163-174https://doi.org/10.1007/s10549-014-2946-2
        • Qiu M
        • Wang J
        • Xu Y
        • Ding X
        • Li M
        • Jiang F
        • et al.
        Circulating tumor DNA is effective for the detection of EGFR mutation in non-small cell lung cancer: a meta-analysis.
        Cancer Epidemiol Biomarkers Prev. 2015; 24: 206-212https://doi.org/10.1158/1055-9965.EPI-14-0895
        • Jelovac D
        • Beaver JA
        • Balukrishna S
        • Wong HY
        • Toro PV
        • Cimino-Mathews A
        • et al.
        A PIK3CA mutation detected in plasma from a patient with synchronous primary breast and lung cancers.
        Hum Pathol. 2014; 45: 880-883https://doi.org/10.1016/j.humpath.2013.10.016
        • Dressman D
        • Yan H
        • Traverso G
        • Kinzler KW
        • Vogelstein B
        Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations.
        Proc Natl Acad Sci USA. 2003; 100: 8817-8822https://doi.org/10.1073/pnas.1133470100
        • Higgins MJ
        • Jelovac D
        • Barnathan E
        • Blair B
        • Slater S
        • Powers P
        • et al.
        Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood.
        Clin Cancer Res. 2012; 18: 3462-3469https://doi.org/10.1158/1078-0432.CCR-11-2696
        • Beaver JA
        • Jelovac D
        • Balukrishna S
        • Cochran RL
        • Croessmann S
        • Zabransky DJ
        • et al.
        Detection of cancer DNA in plasma of patients with early-stage breast cancer.
        Clin Cancer Res. 2014; 20: 2643-2650https://doi.org/10.1158/1078-0432.CCR-13-2933
        • Beck J
        • Urnovitz HB
        • Mitchell WM
        • Schütz E
        • Schutz E
        Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls.
        Mol Cancer Res. 2010; 8: 335-342https://doi.org/10.1158/1541-7786.MCR-09-0314
        • De Mattos-Arruda L
        • Weigelt B
        • Cortes J
        • Won HH
        • Ng CKY
        • Nuciforo P
        • et al.
        Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle.
        Ann Oncol. 2014; 25: 1729-1735https://doi.org/10.1093/annonc/mdu239
        • Curtis C
        Genomic profiling of breast cancers.
        Curr Opin Obstet Gynecol. 2015; 27: 34-39https://doi.org/10.1097/GCO.0000000000000145
        • Goldshtein H
        • Hausmann MJ
        • Douvdevani A
        A rapid direct fluorescent assay for cell-free DNA quantification in biological fluids.
        Ann Clin Biochem. 2009; 46: 488-494https://doi.org/10.1258/acb.2009.009002
        • Agassi R
        • Czeiger D
        • Shaked G
        • Avriel A
        • Sheynin J
        • Lavrenkov K
        • et al.
        Measurement of circulating cell-free DNA levels by a simple fluorescent test in patients with breast cancer.
        Am J Clin Pathol. 2015; 143: 18-24https://doi.org/10.1309/AJCPI5YHG0OGFAHM
        • Heidary M
        • Auer M
        • Ulz P
        • Heitzer E
        • Petru E
        • Gasch C
        • et al.
        The dynamic range of circulating tumor DNA in metastatic breast cancer.
        Breast Cancer Res. 2014; 16: 421https://doi.org/10.1186/s13058-014-0421-y
        • Fackler MJ
        • Lopez Bujanda Z
        • Umbricht C
        • Teo WW
        • Cho S
        • Zhang Z
        • et al.
        Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer.
        Cancer Res. 2014; 74: 2160-2170https://doi.org/10.1158/0008-5472.CAN-13-3392
      2. Lin Z, Neiswender J, Fang B, Ma X, Zhang J, Hu X. Value of circulating cell-free DNA analysis as a diagnostic tool for breast cancer : a meta-analysis 2017;8:26625–36.

        • Roth C
        • Pantel K
        • Muller V
        • Rack B
        • Kasimir-Bauer S
        • Janni W
        • et al.
        Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression.
        BMC Cancer. 2011; 11: 4https://doi.org/10.1186/1471-2407-11-4
        • Leary RJ
        • Sausen M
        • Kinde I
        • Papadopoulos N
        • Carpten JD
        • Craig D
        • et al.
        Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing.
        Sci Transl Med. 2012; 4 (162ra154)https://doi.org/10.1126/scitranslmed.3004742
        • Zanetti-Dällenbach R
        • Wight E
        • Fan AX
        • Lapaire O
        • Hahn S
        • Holzgreve W
        • et al.
        Positive correlation of cell-free DNA in plasma/serum in patients with malignant and benign breast disease.
        Anticancer Res. 2008; 28: 921-925
        • Catarino R
        • Ferreira MM
        • Rodrigues H
        • Coelho A
        • Nogal A
        • Sousa A
        • et al.
        Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer.
        DNA Cell Biol. 2008; 27: 415-421https://doi.org/10.1089/dna.2008.0744
        • Dawson S-JJ
        • Tsui DWY
        • Murtaza M
        • Biggs H
        • Rueda OM
        • Chin S-FF
        • et al.
        Analysis of circulating tumor DNA to monitor metastatic breast cancer.
        N Engl J Med. 2013; 368: 1199-1209https://doi.org/10.1056/NEJMoa1213261
        • Gong B
        • Xue J
        • Yu J
        • Li H
        • Hu H
        • Yen H
        • et al.
        Cell-free DNA in blood is a potential diagnostic biomarker of breast cancer.
        Oncol Lett. 2012; 3: 897-900https://doi.org/10.3892/ol.2012.576
        • Fournie GJ
        • Gayral-Taminh M
        • Bouche JP
        • Conte JJ
        Recovery of nanogram quantities of DNA from plasma and quantitative measurement using labeling by nick translation.
        Anal Biochem. 1986; 158: 250-256
        • Fournie GJ
        • Courtin JP
        • Laval F
        • Chale JJ
        • Pourrat JP
        • Pujazon MC
        • et al.
        Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours.
        Cancer Lett. 1995; 91: 221-227
        • Fournie GJ
        Circulating DNA and lupus nephritis.
        Kidney Int. 1988; 33: 487-497
        • Vargo JS
        • Becker DM
        • Philbrick JT
        • Schoonover FW
        • Davis JS
        Plasma DNA. A simple, rapid test for aiding the diagnosis of pulmonary embolism.
        Chest. 1990; 97: 63-68
        • Gahan PB
        • Swaminathan R
        Circulating nucleic acids in plasma and serum: recent developments.
        Ann NY Acad Sci. 2008; 1137: 1-6https://doi.org/10.1196/annals.1448.050
        • Stroun M
        • Lyautey J
        • Lederrey C
        • Olson-Sand A
        • Anker P
        About the possible origin and mechanism of circulating DNA: apoptosis and active DNA release.
        Clin Chim Acta. 2001; 313: 139-142https://doi.org/10.1016/S0009-8981(01)00665-9
        • Zanetti-Dallenbach RA
        • Schmid S
        • Wight E
        • Holzgreve W
        • Ladewing A
        • Hahn S
        • et al.
        Levels of circulating cell-free serum DNA in benign and malignant breast lesions.
        Int J Biol Markers. 2007; 22: 95-99
        • Hashad D
        • Sorour A
        • Ghazal A
        • Talaat I
        Free circulating tumor DNA as a diagnostic marker for breast cancer.
        J Clin Lab Anal. 2012; 26: 467-472https://doi.org/10.1002/jcla.21548
        • Murphy CG
        • Modi S
        HER2 breast cancer therapies: a review.
        Biologics. 2009; 3: 289-301https://doi.org/10.2147/BTT.S3479
        • Szabo CI
        • King MC
        Inherited breast and ovarian cancer.
        Hum Mol Genet. 1995; 4 (Spec No): 1811-1817
        • Ma PC
        • Zhang X
        • Wang ZJ
        High-throughput mutational analysis of the human cancer genome.
        Pharmacogenomics. 2006; 7: 597-612https://doi.org/10.2217/14622416.7.4.597
        • Chimonidou M
        • Strati A
        • Malamos N
        • Georgoulias V
        • Lianidou ES
        SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer.
        Clin Chem. 2013; 59: 270-279https://doi.org/10.1373/clinchem.2012.191551
        • Chandarlapaty S
        • Chen D
        • He W
        • Sung P
        • Samoila A
        • You D
        • et al.
        Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer.
        JAMA Oncol. 2016; 2: 1310https://doi.org/10.1001/jamaoncol.2016.1279
        • Gyanchandani R
        • Kota KJ
        • Jonnalagadda AR
        • Minteer T
        • Knapick BA
        • Oesterreich S
        • et al.
        Detection of ESR1 mutations in circulating cell-free DNA from patients with metastatic breast cancer treated with palbociclib and letrozole.
        Oncotarget. 2016; https://doi.org/10.18632/oncotarget.11383
        • Schiavon G
        • Hrebien S
        • Garcia-Murillas I
        • Cutts RJ
        • Pearson A
        • Tarazona N
        • et al.
        Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer.
        Sci Transl Med. 2015; 7 (313ra182)https://doi.org/10.1126/scitranslmed.aac7551
        • Board RE
        • Wardley AM
        • Dixon JM
        • Armstrong AC
        • Howell S
        • Renshaw L
        • et al.
        Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer.
        Breast Cancer Res Treat. 2010; 120: 461-467https://doi.org/10.1007/s10549-010-0747-9
        • Shan M
        • Yin H
        • Li J
        • Li X
        • Wang D
        • Su Y
        • et al.
        Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer.
        Oncotarget. 2016; 7https://doi.org/10.18632/oncotarget.7608
        • Mirza S
        • Sharma G
        • Parshad R
        • Srivastava A
        • Gupta SD
        • Ralhan R
        Clinical significance of Stratifin, ERalpha and PR promoter methylation in tumor and serum DNA in Indian breast cancer patients.
        Clin Biochem. 2010; 43: 380-386https://doi.org/10.1016/j.clinbiochem.2009.11.016
        • Shaw JA
        • Guttery DS
        • Hills A
        • Fernandez-Garcia D
        • Page K
        • Rosales BM
        • et al.
        Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high circulating tumor cell counts.
        Clin Cancer Res. 2017; 23: 88-96https://doi.org/10.1158/1078-0432.CCR-16-0825
        • Schwarzenbach H
        • Eichelser C
        • Kropidlowski J
        • Janni W
        • Rack B
        • Pantel K
        Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression.
        Clin Cancer Res. 2012; 18: 5719-5730https://doi.org/10.1158/1078-0432.CCR-12-0142
        • Silva JM
        • Dominguez G
        • Villanueva MJ
        • Gonzalez R
        • Garcia JM
        • Corbacho C
        • et al.
        Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients.
        Br J Cancer. 1999; 80: 1262-1264https://doi.org/10.1038/sj.bjc.6690495
        • Janku F
        • Angenendt P
        • Tsimberidou AM
        • Fu S
        • Naing A
        • Falchook GS
        • et al.
        Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies.
        Oncotarget. 2015; 6https://doi.org/10.18632/oncotarget.5663
        • Swystun LL
        • Mukherjee S
        • Liaw PC
        Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus.
        J Thromb Haemost. 2011; 9: 2313-2321https://doi.org/10.1111/j.1538-7836.2011.04465.x
        • Shaw JA
        • Page K
        • Blighe K
        • Hava N
        • Guttery D
        • Ward B
        • et al.
        Genomic analysis of circulating cell-free DNA infers breast cancer dormancy.
        Genome Res. 2012; 22: 220-231https://doi.org/10.1101/gr.123497.111
        • Fiegl H
        • Millinger S
        • Mueller-Holzner E
        • Marth C
        • Ensinger C
        • Berger A
        • et al.
        Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients.
        Cancer Res. 2005; 65: 1141-1145https://doi.org/10.1158/0008-5472.CAN-04-2438
        • Gil EY
        • Jo UH
        • Jeong H
        • Whang YM
        • Woo OH
        • Cho KR
        • et al.
        Promoter methylation of RASSF1A modulates the effect of the microtubule-targeting agent docetaxel in breast cancer.
        Int J Oncol. 2012; 41: 611-620https://doi.org/10.3892/ijo.2012.1470
        • Kajabova V
        • Smolkova B
        • Zmetakova I
        • Sebova K
        • Krivulcik T
        • Bella V
        • et al.
        RASSF1A promoter methylation levels positively correlate with estrogen receptor expression in breast cancer patients.
        Transl Oncol. 2013; 6: 297-304https://doi.org/10.1593/tlo.13244
        • Fribbens C
        • O'Leary B
        • Kilburn L
        • Hrebien S
        • Garcia-Murillas I
        • Beaney M
        • et al.
        Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer.
        J Clin Oncol. 2016; : 7-9https://doi.org/10.1200/JCO.2016.67.3061
        • Page K
        • Guttery DS
        • Fernandez-Garcia D
        • Hills A
        • Hastings RK
        • Luo J
        • et al.
        Next generation sequencing of circulating cell-free DNA for evaluating mutations and gene amplification in metastatic breast cancer.
        Clin Chem. 2017; 63: 532-541https://doi.org/10.1373/clinchem.2016.261834
        • Riva F
        • Bidard F-C
        • Houy A
        • Saliou A
        • Madic J
        • Rampanou A
        • et al.
        Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer.
        Clin Chem. 2017; 699https://doi.org/10.1373/clinchem.2016.262337
        • Ma F
        • Zhu W
        • Guan Y
        • Yang L
        • Xia X
        • Chen S
        • et al.
        ctDNA dynamics: a novel indicator to track resistance in metastatic breast cancer treated with anti-HER2 therapy.
        Oncotarget. 2016; : 7https://doi.org/10.18632/oncotarget.11791
        • Gevensleben H
        • Garcia-Murillas I
        • Graeser MK
        • Schiavon G
        • Osin P
        • Parton M
        • et al.
        Noninvasive detection of HER2 amplification with plasma DNA digital PCR.
        Clin Cancer Res. 2013; 19: 3276-3284https://doi.org/10.1158/1078-0432.CCR-12-3768
        • Levenson V V
        Biomarkers for early detection of breast cancer: what, when, and where?.
        Biochim Biophys Acta. 2007; 1770: 847-856https://doi.org/10.1016/j.bbagen.2007.01.017
        • Joosse SA
        • Muller V
        • Steinbach B
        • Pantel K
        • Schwarzenbach H
        Circulating cell-free cancer-testis MAGE-A RNA, BORIS RNA, let-7b and miR-202 in the blood of patients with breast cancer and benign breast diseases.
        Br J Cancer. 2014; 111: 909-917https://doi.org/10.1038/bjc.2014.360
        • Wang M
        • Ji S
        • Shao G
        • Zhang J
        • Zhao K
        • Wang Z
        • et al.
        Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients.
        Clin Transl Oncol. 2017; https://doi.org/10.1007/s12094-017-1805-0
        • Bidard F-C
        • Peeters DJ
        • Fehm T
        • Nolé F
        • Gisbert-Criado R
        • Mavroudis D
        • et al.
        Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data.
        Lancet Oncol. 2014; 15: 406-414https://doi.org/10.1016/S1470-2045(14)70069-5
        • Madic J
        • Kiialainen A
        • Bidard F-CC
        • Birzele F
        • Ramey G
        • Leroy Q
        • et al.
        Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients.
        Int J Cancer. 2014; : 1-8https://doi.org/10.1002/ijc.29265
        • Méhes G
        • Witt A
        • Kubista E
        • Ambros PF
        • Mehes G
        • Witt A
        • et al.
        Circulating breast cancer cells are frequently apoptotic.
        Am J Pathol. 2001; 159: 17-20https://doi.org/10.1016/S0002-9440(10)61667-7
        • Cristofanilli M
        Circulating tumor cells, disease progression, and survival in metastatic breast cancer.
        Semin Oncol. 2006; 33: S9-14https://doi.org/10.1053/j.seminoncol.2006.03.016
        • Kucharzewska P
        • Belting M
        Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress.
        J Extracell Vesicles. 2013; 2https://doi.org/10.3402/jev.v2i0.20304
        • Lowry MC
        • Gallagher WM
        • O'Driscoll L
        The role of exosomes in breast cancer.
        Clin Chem. 2015; 61: 1457-1465https://doi.org/10.1373/clinchem.2015.240028
        • Jia Y
        • Chen Y
        • Wang Q
        • Jayasinghe U
        • Luo X
        • Wei Q
        • et al.
        Exosome: emerging biomarker in breast cancer.
        Oncotarget. 2017; 8: 41717-41733https://doi.org/10.18632/oncotarget.16684
        • Hannafon BN
        • Trigoso YD
        • Calloway CL
        • Zhao YD
        • Lum DH
        • Welm AL
        • et al.
        Plasma exosome microRNAs are indicative of breast cancer.
        Breast Cancer Res. 2016; 18: 1-14https://doi.org/10.1186/s13058-016-0753-x
        • Takeshita T
        • Yamamoto Y
        • Yamamoto-Ibusuki M
        • Inao T
        • Sueta A
        • Fujiwara S
        • et al.
        Prognostic role of PIK3CA mutations of cell-free DNA in early-stage triple negative breast cancer.
        Cancer Sci. 2015; 106: 1582-1589https://doi.org/10.1111/cas.12813
        • Di Modica M
        • Regondi V
        • Sandri M
        • Iorio MV
        • Zanetti A
        • Tagliabue E
        • et al.
        Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers.
        Cancer Lett. 2017; 384: 94-100https://doi.org/10.1016/j.canlet.2016.09.013
        • Duffy MJ
        • Evoy D
        • McDermott EW
        CA 15-3: uses and limitation as a biomarker for breast cancer.
        Clin Chim Acta. 2010; 411: 1869-1874https://doi.org/10.1016/j.cca.2010.08.039
        • Shaw JA
        • Stebbing J
        Circulating free DNA in the management of breast cancer.
        Ann Transl Med. 2014; 2: 3https://doi.org/10.3978/j.issn.2305-5839.2013.06.06
        • Page K
        • Hava N
        • Ward B
        • Brown J
        • Guttery DS
        • Ruangpratheep C
        • et al.
        Detection of HER2 amplification in circulating free DNA in patients with breast cancer.
        Br J Cancer. 2011; 104: 1342-1348https://doi.org/10.1038/bjc.2011.89
        • Elshimali YI
        • Khaddour H
        • Sarkissyan M
        • Wu Y
        • Vadgama JV
        The clinical Utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients.
        Int J Mol Sci. 2013; 14: 18925-18958https://doi.org/10.3390/ijms140918925
        • Le Du F
        • Ueno NT
        • Gonzalez-Angulo AM
        Breast cancer biomarkers: utility in clinical practice.
        Curr Breast Cancer Rep. 2013; 5: 1-16https://doi.org/10.1007/s12609-013-0125-9
        • Polivka J
        • Pesta M
        • Janku F
        Testing for oncogenic molecular aberrations in cell-free DNA-based liquid biopsies in the clinic: are we there yet?.
        Expert Rev Mol Diagn. 2015; 7159: 1-14https://doi.org/10.1586/14737159.2015.1110021
        • Chae YK
        • Davis AA
        • Jain S
        • Santa-Maria C
        • Flaum L
        • Beaubier N
        • et al.
        Concordance of genomic alterations by next-generation sequencing (NGS) in tumor tissue versus circulating tumor DNA in breast cancer.
        Mol Cancer Ther. 2017; (molcanther.0061.2017)https://doi.org/10.1158/1535-7163.MCT-17-0061
        • García-Saenz JA
        • Ayllón P
        • Laig M
        • Acosta-Eyzaguirre D
        • García-Esquinas M
        • Montes M
        • et al.
        Tumor burden monitoring using cell-free tumor DNA could be limited by tumor heterogeneity in advanced breast cancer and should be evaluated together with radiographic imaging.
        BMC Cancer. 2017; 17: 210https://doi.org/10.1186/s12885-017-3185-9