Decoding colorectal cancer epigenomics

      Highlights

      • Epigenetic alterations are an emerging factor in colorectal carcinogenesis.
      • The discovery of epigenetic pathways constitutes a major advance in cancer biomarker discovery.
      • Well-designed clinical trials of epigenetic biomarkers are needed especially in the era of liquid biopsy.
      Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.

      Graphical Abstract

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jemal A.
        • Bray F.
        • Center M.M.
        • et al.
        Global cancer statistics.
        CA Cancer J Clin. 2011; 61: 69-90https://doi.org/10.3322/caac.20107
        • Siegel R.
        • DeSantis C.
        • Jemal A.
        Colorectal cancer statistics.
        CA Cancer J Clin. 2014; 64: 104-117https://doi.org/10.3322/caac.21220
        • Aran V.
        • Victorino A.P.
        • Thuler L.C.
        • et al.
        Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality.
        Clin Colorectal Cancer. 2016; 15: 195-203https://doi.org/10.1016/j.clcc.2016.02.008
        • Vaiopoulos A.G.
        • Athanasoula K.C.
        • Papavassiliou A.G.
        Epigenetic modifications in colorectal cancer: molecular insights and therapeutic challenges.
        Biochim Biophys Acta. 2014; 1842: 971-980https://doi.org/10.1016/j.bbadis.2014.02.006
        • Fearon E.R.
        • Vogelstein B.
        A genetic model for colorectal tumorigenesis.
        Cell. 1990; 61: 759-767
        • Okugawa Y.
        • Grady W.M.
        • Goel A.
        Epigenetic alterations in colorectal cancer: emerging biomarkers.
        Gastroenterology. 2015; 149 (e12): 1204-1225https://doi.org/10.1053/j.gastro.2015.07.011
        • The Cancer Genome Atlas Network
        Comprehensive molecular characterization of human colon and rectal cancer.
        Nature. 2012; 487: 330-337https://doi.org/10.1038/nature11252
        • Toiyama Y.
        • Okugawa Y.
        • Goel A.
        DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer.
        Biochem Biophys Res Commun. 2014; 455: 43-57
        • Ho V.
        • Ashbury J.E.
        • Taylor S.
        • et al.
        Gene-specific DNA methylation of DNMT3B and MTHFR and colorectal adenoma risk.
        Mutat Res. 2015; 782: 1-6https://doi.org/10.1016/j.mrfmmm.2015.09.005
        • Ho V.
        • Ashbury J.E.
        • Taylor S.
        • et al.
        Genetic and epigenetic variation in the DNMT3B and MTHFR genes and colorectal adenoma risk.
        Environ Mol Mutagen. 2016; 57: 261-268https://doi.org/10.1002/em.22010
        • Gargalionis A.N.
        • Piperi C.
        • Adamopoulos C.
        • et al.
        Histone modifications as a pathogenic mechanism of colorectal tumorigenesis.
        Int J Biochem Cell Biol. 2012; 44: 1276-1289https://doi.org/10.1016/j.biocel.2012.05.002
        • You J.S.
        • Jones P.A.
        Cancer genetics and epigenetics: two sides of the same coin?.
        Cancer Cell. 2012; 22: 9-20https://doi.org/10.1016/j.ccr.2012.06.008
        • Dawson M.A.
        • Kouzarides T.
        Cancer epigenetics: from mechanism to therapy.
        Cell. 2012; 150: 12-27https://doi.org/10.1016/j.cell.2012.06.013
        • Thomas J.
        • Ohtsuka M.
        • Pichler M.
        • et al.
        MicroRNAs: clinical relevance in colorectal cancer.
        Int J Mol Sci. 2015; 16: 28063-28076https://doi.org/10.3390/ijms161226080
        • Xuan Y.
        • Yang H.
        • Zhao L.
        • et al.
        MicroRNAs in colorectal cancer: small molecules with big functions.
        Cancer Lett. 2015; 360: 89-105https://doi.org/10.1016/j.canlet.2014.11.051
        • Bonfrate L.
        • Altomare D.F.
        • Di Lena M.
        • et al.
        MicroRNA in colorectal cancer: new perspectives for diagnosis, prognosis and treatment.
        J Gastrointestin Liver Dis. 2013; 22: 311-320
        • Schetter A.J.
        • Okayama H.
        • Harris C.C.
        The role of microRNAs in colorectal cancer.
        Cancer J. 2012; 18: 244-252https://doi.org/10.1097/PPO.0b013e318258b78f
        • Dong Y.
        • Wu W.K.
        • Wu C.W.
        • et al.
        MicroRNA dysregulation in colorectal cancer: a clinical perspective.
        Br J Cancer. 2011; 104: 893-898https://doi.org/10.1038/bjc.2011.57
        • Venkatachalam R.
        • Ligtenberg M.J.
        • Hoogerbrugge N.
        • et al.
        The epigenetics of (hereditary) colorectal cancer.
        Cancer Genet Cytogenet. 2010; 203: 1-6https://doi.org/10.1016/j.cancergencyto.2010.08.013
        • Zaanan A.
        • Meunier K.
        • Sangar F.
        • et al.
        Microsatellite instability in colorectal cancer: from molecular oncogenic mechanisms to clinical implications.
        Cell Oncol (Dordr). 2011; 34: 155-176https://doi.org/10.1007/s13402-011-0024-x
        • Jeltsch A.
        • Jurkowska R.Z.
        New concepts in DNA methylation.
        Trends Biochem Sci. 2014; 39: 310-318https://doi.org/10.1016/j.tibs.2014.05.002
        • Sakai E.
        • Nakajima A.
        • Kaneda A.
        Accumulation of aberrant DNA methylation during colorectal cancer development.
        World J Gastroenterol. 2014; 20: 978-987https://doi.org/10.3748/wjg.v20.i4.978
        • Coppedè F.
        The role of epigenetics in colorectal cancer.
        Expert Rev Gastroenterol Hepatol. 2014; 8: 935-948https://doi.org/10.1586/17474124.2014.924397
        • Patai A.V.
        • Molnár B.
        • Kalmár A.
        • et al.
        Role of DNA methylation in colorectal carcinogenesis.
        Dig Dis. 2012; 30: 310-315https://doi.org/10.1159/000337004
        • Carmona F.J.
        • Esteller M.
        Epigenetics of colorectal cancer.
        in: Metastasis of Colorectal Cancer. Cancer Metastasis—Biology and Treatment. Vol. 14. Springer, Dordrecht2010: 101-125https://doi.org/10.1007/978-90-481-8833-8_4
        • Sproul D.
        • Meehan R.R.
        Genomic insights into cancer-associated aberrant CpG island hypermethylation.
        Brief Funct Genomics. 2013; 12: 174-190https://doi.org/10.1093/bfgp/els063
        • Bae J.M.
        • Kim J.H.
        • Kang G.H.
        Epigenetic alterations in colorectal cancer: the CpG island methylator phenotype.
        Histol Histopathol. 2013; 28: 585-595https://doi.org/10.14670/HH-28.585
        • Akhavan-Niaki H.
        • Samadani A.A.
        DNA methylation and cancer development: molecular mechanism.
        Cell Biochem Biophys. 2013; 67: 501-513https://doi.org/10.1007/s12013-013-9555-2
        • Smith Z.D.
        • Meissner A.
        DNA methylation: roles in mammalian development.
        Nat Rev Genet. 2013; 14: 204-220https://doi.org/10.1038/nrg3354
        • Almeida F.G.
        • de Aquino P.F.
        • de Souza A.D.
        • et al.
        Colorectal cancer DNA methylation patterns from patients in Manaus, Brazil.
        Biol Res. 2015; 48: 50https://doi.org/10.1186/s40659-015-0042-7
        • Schübeler D.
        Function and information content of DNA methylation.
        Nature. 2015; 517: 321-326https://doi.org/10.1038/nature14192
        • Kulis M.
        • Queirós A.C.
        • Beekman R.
        • et al.
        Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer.
        Biochim Biophys Acta. 2013; 1829: 1161-1174https://doi.org/10.1016/j.bbagrm.2013.08.001
        • Hur K.1.
        • Cejas P.
        • Feliu J.
        • et al.
        Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis.
        Gut. 2014; 63: 635-646https://doi.org/10.1136/gutjnl-2012-304219
        • Antelo M.
        • Balaguer F.
        • Shia J.
        • et al.
        A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer.
        PLoS ONE. 2012; 7: e45357https://doi.org/10.1371/journal.pone.0045357
        • Luo Y.
        • Wong C.J.
        • Kaz A.M.
        • et al.
        Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer.
        Gastroenterology. 2014; 147 (e8): 418-429https://doi.org/10.1053/j.gastro.2014.04.039
        • Toiyama Y.
        • Okugawa Y.
        • Goel A.
        DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer.
        Biochem Biophys Res Commun. 2014; 455: 43-57https://doi.org/10.1016/j.bbrc.2014.08.001
        • Lao V.V.
        • Grady W.M.
        Epigenetics and colorectal cancer.
        Nat Rev Gastroenterol Hepatol. 2011; 8: 686-700
        • Khare S.
        • Verma M.
        Epigenetics of colon cancer.
        Methods Mol Biol. 2012; 863: 177-185
        • Migheli F.
        • Migliore L.
        Epigenetics of colorectal cancer.
        Clin Genet. 2012; 81: 312-318
        • Rawłuszko-Wieczorek A.A.
        • Siera A.
        • Horbacka K.
        • et al.
        Clinical significance of DNA methylation mRNA levels of TET family members in colorectal cancer.
        J Cancer Res Clin Oncol. 2015; 141: 1379-1392
        • Toraño E.G.
        • Petrus S.
        • Fernandez A.F.
        • et al.
        Global DNA hypomethylation in cancer: review of validated methods and clinical significance.
        Clin Chem Lab Med. 2012; 50: 1733-1742https://doi.org/10.1515/cclm-2011-0902
        • Solyom S.
        • Ewing A.D.
        • Rahrmann E.P.
        • et al.
        Extensive somatic L1 retrotransposition in colorectal tumors.
        Genome Res. 2012; 22: 2328-2338https://doi.org/10.1101/gr.145235.112
        • Tubio J.M.C.
        • Li Y.
        • Ju Y.S.
        • et al.
        Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes.
        Science. 2014; 345: 1251343https://doi.org/10.1126/science.1251343
        • Vogelstein B.
        • Fearon E.R.
        • Hamilton S.R.
        • et al.
        Genetic alterations during colorectal-tumor development.
        N Engl J Med. 1988; 319: 525-532
        • How Kit A.
        • Nielsen H.M.
        • Tost J.
        DNA methylation based biomarkers: practical considerations and applications.
        Biochimie. 2012; 94: 2314-2337https://doi.org/10.1016/j.biochi.2012.07.014
        • Knudson Jr, A.G.
        • Strong L.C.
        Mutation and cancer: a model for Wilms' tumor of the kidney.
        J Natl Cancer Inst. 1972; 48: 313-324
        • Cock-Rada A.
        • Weitzman J.B.
        The methylation landscape of tumour metastasis.
        Biol Cell. 2013; 105: 73-90https://doi.org/10.1111/boc.201200029
        • Wang Y.
        • Shang Y.
        Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis.
        Exp Cell Res. 2013; 319: 160-169https://doi.org/10.1016/j.yexcr.2012.07.019
        • Jia M.
        • Gao X.
        • Zhang Y.
        • et al.
        Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review.
        Clin Epigenetics. 2016; 8: 25https://doi.org/10.1186/s13148-016-0191-8
        • Rhee Y.-Y.
        • Kim K.-J.
        • Kang G.H.
        CpG island methylator phenotype-high colorectal cancers and their prognostic implications and relationships with the serrated neoplasia pathway.
        Gut Liver. 2017; 11: 38-46https://doi.org/10.5009/gnl15535
        • Suzuki H.
        • Yamamoto E.
        • Maruyama R.
        • et al.
        Biological significance of the CpG island methylator phenotype.
        Biochem Biophys Res Commun. 2014; 455: 35-42https://doi.org/10.1016/j.bbrc.2014.07.007
        • Wood L.D.
        • Parsons D.W.
        • Jones S.
        • et al.
        The genomic landscapes of human breast and colorectal cancers.
        Science. 2007; 318: 1108-1113https://doi.org/10.1126/science.1145720
        • Yagi K.
        • Akagi K.
        • Hayashi H.
        • et al.
        Three DNA methylation epigenotypes in human colorectal cancer.
        Clin Cancer Res. 2010; 16: 21-33https://doi.org/10.1158/1078-0432.CCR-09-2006
        • Hinoue T.
        • Weisenberger D.J.
        • Lange C.P.E.
        • et al.
        Genome-scale analysis of aberrant DNA methylation in colorectal cancer.
        Genome Res. 2012; 22: 271-282
        • Rex D.K.
        • Ahnen D.J.
        • Baron J.A.
        • et al.
        Serrated lesions of the colorectum: review and recommendations from an expert panel.
        Am J Gastroenterol. 2012; 107: 1315-1329https://doi.org/10.1038/ajg.2012.161
        • Toyota M.
        • Ahuja N.
        • Suzuki H.
        • et al.
        Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype.
        Cancer Res. 1999; 59: 5438-5442
        • Lin L.
        • Chen G.Y.
        • Xu C.W.
        • et al.
        Evaluation and identification of factors related to KRAS and BRAF gene mutations in colorectal cancer: a meta-analysis.
        J Cancer Res Ther. 2016; 12: C191-C198https://doi.org/10.4103/0973-1482.200601
        • Zlobec I.
        • Bihl M.P.
        • Foerster A.
        • et al.
        The impact of CpG island methylator phenotype and microsatellite instability on tumour budding in colorectal cancer.
        Histopathology. 2012; 61: 777-787https://doi.org/10.1111/j.1365-2559.2012.04273.x
        • Thiel A.
        • Heinonen M.
        • Kantonen J.
        • et al.
        BRAF mutation in sporadic colorectal cancer and Lynch syndrome.
        Virchows Arch. 2013; 463: 613-621https://doi.org/10.1007/s00428-013-1470-9
        • Clancy C.
        • Burke J.P.
        • Kalady M.F.
        • et al.
        BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis.
        Colorectal Dis. 2013; 15: e711-e718https://doi.org/10.1111/codi.12427
        • Kloor M.
        • Staffa L.
        • Ahadova A.
        • et al.
        Clinical significance of microsatellite instability in colorectal cancer.
        Langenbecks Arch Surg. 2014; 399: 23-31https://doi.org/10.1007/s00423-013-1112-3
        • Chen W.
        • Swanson B.J.
        • Frankel W.L.
        Molecular genetics of microsatellite-unstable colorectal cancer for pathologists.
        Diagn Pathol. 2017; 12: 24https://doi.org/10.1186/s13000-017-0613-8
        • Barrow T.M.
        • Michels K.B.
        Epigenetic epidemiology of cancer.
        Biochem Biophys Res Commun. 2014; 455: 70-83https://doi.org/10.1016/j.bbrc.2014.08.002
        • Audia J.E.
        • Campbell R.M.
        Histone modifications and cancer.
        Cold Spring Harb Perspect Biol. 2016; 8: a019521https://doi.org/10.1101/cshperspect.a019521
        • Gezer U.
        • Holdenrieder S.
        Post translational histone modifications in circulating nucleosomes as new biomarkers in colorectal cancer.
        In Vivo. 2014; 28: 287-292
        • Su J.
        • Wang F.
        • Cai Y.
        • et al.
        The functional analysis of histone acetyltransferase MOF in tumorigenesis.
        Int J Mol Sci. 2016; 17: 99https://doi.org/10.3390/ijms17010099
        • Fraga M.F.
        • Ballestar E.
        • Villar-Garea A.
        • et al.
        Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.
        Nat Genet. 2005; 37: 391-400https://doi.org/10.1038/ng1531
        • Ferraro A.
        Altered primary chromatin structures and their implications in cancer development.
        Cell Oncol (Dordr). 2016; 39: 195-210https://doi.org/10.1007/s13402-016-0276-6
        • Nakazawa T.
        • Kondo T.
        • Ma D.
        • et al.
        Global histone modification of histone H3 in colorectal cancer and its precursor lesions.
        Hum Pathol. 2012; 43: 834-842https://doi.org/10.1016/j.humpath.2011.07.009
        • Kondo Y.
        • Issa J.-P.J.
        Epigenetic changes in colorectal cancer.
        Cancer Metastasis Rev. 2004; 23: 29-39
        • Binder H.
        • Steiner L.
        • Przybilla J.
        • et al.
        Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation.
        Phys Biol. 2013; 10: 026006https://doi.org/10.1088/1478-3975/10/2/026006
        • Guidoboni M.
        • Gafà R.
        • Viel A.
        • et al.
        Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis.
        Am J Pathol. 2001; 159: 297-304
        • Hagelkruys A.
        • Sawicka A.
        • Rennmayr M.
        • et al.
        The biology of HDAC in cancer: the nuclear and epigenetic components.
        in: Histone Deacetylases: The Biology and Clinical Implication. Handbook of Experimental Pharmacology. Vol. 206. Springer, Berlin, Heidelberg2011: 13-37https://doi.org/10.1007/978-3-642-21631-2_2
        • Montezuma D.
        • Henrique R.M.
        • Jerónimo C.
        • et al.
        Altered expression of histone deacetylases in cancer.
        Crit Rev Oncog. 2015; 20: 19-34
        • Beumer H.
        • Tawbi H.
        Role of histone deacetylases and their inhibitors in cancer biology and treatment.
        Curr Clin Pharmacol. 2010; 5: 196-208
        • Ashktorab H.
        • Belgrave K.
        • Hosseinkhah F.
        • et al.
        Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma.
        Dig Dis Sci. 2009; 54: 2109-2117
        • Bardhan K.
        • Liu K.
        Epigenetics and colorectal cancer pathogenesis.
        Cancers (Basel). 2013; 5: 676-713
        • Nosho K.
        • Shima K.
        • Irahara N.
        • et al.
        SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer.
        Mod Pathol. 2009; 22: 922-932https://doi.org/10.1038/modpathol.2009.49
        • Bannister A.J.
        • Kouzarides T.
        Regulation of chromatin by histone modifications.
        Cell Res. 2011; 21: 381-395https://doi.org/10.1038/cr.2011.22
        • Ruthenburg A.J.
        • Allis C.D.
        • Wysocka J.
        Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.
        Mol Cell. 2007; 25: 15-30
        • Klose R.J.
        • Zhang Y.
        Regulation of histone methylation by demethylimination and demethylation.
        Nat Rev Mol Cell Biol. 2007; 8: 307-318
        • Bracken A.P.
        • Helin K.
        Polycomb group proteins: navigators of lineage pathways led astray in cancer.
        Nat Rev Cancer. 2009; 9: 773-784https://doi.org/10.1038/nrc2736
        • Liu Y.L.
        • Gao X.
        • Jiang Y.
        • et al.
        Expression and clinicopathological significance of EED, SUZ12 and EZH2 mRNA in colorectal cancer.
        J Cancer Res Clin Oncol. 2015; 141: 661-669https://doi.org/10.1007/s00432-014-1854-5
        • Kang M.Y.
        • Lee B.B.
        • Kim Y.H.
        • et al.
        Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer.
        Int J Cancer. 2007; 121: 2192-2197
        • Natarajan T.G.
        • Kallakury B.V.
        • Sheehan C.E.
        • et al.
        Epigenetic regulator MLL2 shows altered expression in cancer cell lines and tumors from human breast and colon.
        Cancer Cell Int. 2010; 10: 13https://doi.org/10.1186/1475-2867-10-13
        • Naxerova K.
        • Reiter J.G.
        • Brachtel E.
        • et al.
        Origins of lymphatic and distant metastases in human colorectal cancer.
        Science. 2017; 357: 55-60https://doi.org/10.1126/science.aai8515
        • Paduch R.
        The role of lymphangiogenesis and angiogenesis in tumor metastasis.
        Cell Oncol (Dordr). 2016; 39: 397-410https://doi.org/10.1007/s13402-016-0281-9
        • Bielenberg D.R.
        • Zetter B.R.
        The contribution of angiogenesis to the process of metastasis.
        Cancer J. 2015; 21: 267-273https://doi.org/10.1097/PPO.0000000000000138
        • Xu B.
        • Shen F.
        • Cao J.
        • et al.
        Angiogenesis in liver metastasis of colo-rectal carcinoma.
        Front Biosci (Landmark Ed). 2013; 18: 1435-1443
        • Hansen T.F.
        • Nielsen B.S.
        • Jakobsen A.
        • et al.
        Visualising and quantifying angiogenesis in metastatic colorectal cancer.
        Cell Oncol (Dordr). 2013; 36: 341-350https://doi.org/10.1007/s13402-013-0139-3
        • Helling T.S.
        • Martin M.
        Cause of death from liver metastases in colorectal cancer.
        Ann Surg Oncol. 2014; 21: 501-506
        • Pouliot N.
        • Kusuma N.
        Laminin-511: a multi-functional adhesion protein regulating cell migration, tumor invasion and metastasis.
        Cell Adh Migr. 2013; 7: 142-149https://doi.org/10.4161/cam.22125
        • Kikkawa Y.
        • Hozumi K.
        • Katagiri F.
        • et al.
        Laminin-111-derived peptides and cancer.
        Cell Adh Migr. 2013; 7: 150-256https://doi.org/10.4161/cam.22827
        • Canel M.
        • Serrels A.
        • Frame M.C.
        • et al.
        E-cadherin–integrin crosstalk in cancer invasion and metastasis.
        J Cell Sci. 2013; 126: 393-401
        • Herszényi L.
        • Hritz I.
        • Lakatos G.
        • et al.
        The behavior of matrix metalloproteinases and their inhibitors in colorectal cancer.
        Int J Mol Sci. 2012; 13: 13240-13263https://doi.org/10.3390/ijms131013240
        • Remillard T.C.
        • Bratslavsky G.
        • Jensen-Taubman S.
        • et al.
        Molecular mechanisms of tissue inhibitor of metalloproteinase 2 in the tumor microenvironment.
        Mol Cell Ther. 2014; 2: 17https://doi.org/10.1186/2052-8426-2-17
        • Deryugina E.I.
        • Quigley J.P.
        Tumor angiogenesis: MMP-mediated induction of intravasation-and metastasis-sustaining neovasculature.
        Matrix Biol. 2015; 44-46: 94-112https://doi.org/10.1016/j.matbio.2015.04.004
        • Al-Temaimi R.A.
        • Tan T.Z.
        • Marafie M.J.
        • et al.
        Identification of 42 genes linked to stage II colorectal cancer metastatic relapse.
        Int J Mol Sci. 2016; 17
        • Hurst D.R.
        • Welch D.R.
        Metastasis suppressor genes at the interface between the environment and tumor cell growth.
        Int Rev Cell Mol Biol. 2011; 286: 107-180
        • Lin Y.
        • Dong C.
        • Zhou B.P.
        Epigenetic regulation of EMT: the snail story.
        Curr Pharm Des. 2014; 20: 1698-1705
        • Pienta K.J.
        • Robertson B.A.
        • Coffey D.S.
        • et al.
        The cancer diaspora: metastasis beyond the seed and soil hypothesis.
        Clin Cancer Res. 2013; 19: 5849-5855https://doi.org/10.1158/1078-0432.CCR-13-2158
        • Seretis F.
        • Seretis C.
        • Youssef H.
        • et al.
        Colorectal cancer: seed and soil hypothesis revisited.
        Anticancer Res. 2014; 34: 2087-2094
        • de Groot A.E.
        • Roy S.
        • Brown J.S.
        • et al.
        Revisiting seed and soil: examining the primary tumor and cancer cell foraging in metastasis.
        Mol Cancer Res. 2017; 15: 361-370https://doi.org/10.1158/1541-7786.MCR-16-0436
        • Peinado H.
        • Zhang H.
        • Matei I.R.
        • et al.
        Pre-metastatic niches: organ-specific homes for metastases.
        Nat Rev Cancer. 2017; 17: 302-317https://doi.org/10.1038/nrc.2017.6
        • Amaro A.
        • Chiara S.
        • Pfeffer U.
        • et al.
        Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.
        Cancer Metastasis Rev. 2016; 35: 63-74https://doi.org/10.1007/s10555-016-9606-4
        • Arends M.J.
        Pathways of colorectal carcinogenesis.
        Appl Immunohistochem Mol Morphol. 2013; 21: 97-102https://doi.org/10.1097/PAI.0b013e31827ea79e
        • Ma J.
        • Gao Q.
        • Zeng S.
        • et al.
        Knockdown of NDRG1 promote epithelial-mesenchymal transition of colorectal cancer via NF-kappaB signaling.
        J Surg Oncol. 2016; 114: 520-527
        • Mao Z.
        • Sun J.
        • Feng B.
        • et al.
        The metastasis suppressor, N-myc Downregulated Gene 1 (NDRG1), is a prognostic biomarker for human colorectal cancer.
        PLoS ONE. 2013; 8: e68206https://doi.org/10.1371/journal.pone.0068206
        • Mi L.
        • Zhu F.
        • Yang X.
        • et al.
        The metastatic suppressor NDRG1 inhibits EMT, migration and invasion through interaction and promotion of caveolin-1 ubiquitylation in human colorectal cancer cells.
        Oncogene. 2017; 36: 4323-4335https://doi.org/10.1038/onc.2017.74
        • Li Q.
        • Chen H.
        Epigenetic modifications of metastasis suppressor genes in colon cancer metastasis.
        Epigenetics. 2011; 6: 849-852https://doi.org/10.4161/epi.6.7.16314
        • Semb H.
        • Christofori G.
        The tumor-suppressor function of E-cadherin.
        Am J Hum Genet. 1998; 63: 1588-1593
        • Buda A.
        • Pignatelli M.
        E-cadherin and the cytoskeletal network in colorectal cancer development and metastasis.
        Cell Commun Adhes. 2011; 18: 133-143https://doi.org/10.3109/15419061.2011.636465
        • Matteucci E.
        • Maroni P.
        • Luzzati A.
        • et al.
        Bone metastatic process of breast cancer involves methylation state affecting E-cadherin expression through TAZ and WWOX nuclear effectors.
        Eur J Cancer. 2013; 49: 231-244https://doi.org/10.1016/j.ejca.2012.05.006
        • Zhou J.
        • Tao D.
        • Xu Q.
        • et al.
        Expression of E-cadherin and vimentin in oral squamous cell carcinoma.
        Int J Clin Exp Pathol. 2015; 8: 3150-3154
        • Chen H.N.
        • Yuan K.
        • Xie N.
        • et al.
        PDLIM1 stabilizes the E-cadherin/β-catenin complex to prevent epithelial–mesenchymal transition and metastatic potential of colorectal cancer cells.
        Cancer Res. 2016; 76: 1122-1134https://doi.org/10.1158/0008-5472.CAN-15-1962
        • Kim S.A.
        • Inamura K.
        • Yamauchi M.
        • et al.
        Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis.
        Br J Cancer. 2016; 114: 199-206https://doi.org/10.1038/bjc.2015.347
        • Li Y.X.
        • Lu Y.
        • Li C.Y.
        • et al.
        Role of CDH1 promoter methylation in colorectal carcinogenesis: a meta-analysis.
        DNA Cell Biol. 2014; 33: 455-462https://doi.org/10.1089/dna.2013.2291
        • Van Roy F.
        • Beyond E.
        cadherin: roles of other cadherin superfamily members in cancer.
        Nat Rev Cancer. 2014; 14: 121-134https://doi.org/10.1038/nrc3647
        • Raza U.
        • Zhang J.D.
        • Sahin O.
        MicroRNAs: master regulators of drug resistance, stemness, and metastasis.
        J Mol Med. 2014; 92: 321-336https://doi.org/10.1007/s00109-014-1129-2
        • Bouyssou J.M.C.
        • Manier S.
        • Huynh D.
        • et al.
        Regulation of microRNAs in cancer metastasis.
        Biochim Biophys Acta. 2014; 1845: 255-265https://doi.org/10.1016/j.bbcan.2014.02.002
        • Chan S.-H.
        • Wang L.-H.
        Regulation of cancer metastasis by microRNAs.
        J Biomed Sci. 2015; 22: 9https://doi.org/10.1186/s12929-015-0113-7
        • Ma H.
        • Liang C.
        • Wang G.
        • et al.
        MicroRNA-mediated cancer metastasis regulation via heterotypic signals in the microenvironment.
        Curr Pharm Biotechnol. 2014; 15: 455-458
        • Zhu S.
        • Wu H.
        • Wu F.
        • et al.
        MicroRNA-21 targets tumor suppressor genes in invasion and metastasis.
        Cell Res. 2008; 18: 350-359https://doi.org/10.1038/cr.2008.24
        • Muhammad S.
        • Kaur K.
        • Huang R.
        • et al.
        MicroRNAs in colorectal cancer: role in metastasis and clinical perspectives.
        World J Gastroenterol. 2014; 20: 17011-17019https://doi.org/10.3748/wjg.v20.i45.17011
        • Chi Y.
        • Zhou D.
        MicroRNAs in colorectal carcinoma—from pathogenesis to therapy.
        J Exp Clin Cancer Res. 2016; 35: 43https://doi.org/10.1186/s13046-016-0320-4
        • Schetter A.J.
        • Harris C.C.
        Alterations of microRNAs contribute to colon carcinogenesis.
        Semin Oncol. 2011; 38: 734-742https://doi.org/10.1053/j.seminoncol.2011.08.009
        • Ji D.
        • Chen Z.
        • Li M.
        • et al.
        MicroRNA-181a promotes tumor growth and liver metastasis in colorectal cancer by targeting the tumor suppressor WIF-1.
        Mol Cancer. 2014; 13: 86https://doi.org/10.1186/1476-4598-13-86
        • Neerincx M.
        • Sie D.L.S.
        • van de Wiel M.A.
        • et al.
        MiR expression profiles of paired primary colorectal cancer and metastases by next-generation sequencing.
        Oncogenesis. 2015; 4: e170https://doi.org/10.1038/oncsis.2015.29
        • Zhou J.
        • Zhang M.
        • Huang Y.
        • et al.
        MicroRNA-320b promotes colorectal cancer proliferation and invasion by competing with its homologous microRNA-320a.
        Cancer Lett. 2015; 356: 669-675https://doi.org/10.1016/j.canlet.2014.10.014
        • Jung H.Y.
        • Fattet L.
        • Yang J.
        • et al.
        Molecular pathways: linking tumor microenvironment to epithelial–mesenchymal transition in metastasis.
        Clin Cancer Res. 2015; 21: 962-968https://doi.org/10.1158/1078-0432.CCR-13-3173
        • Cao H.
        • Xu E.
        • Liu H.
        • et al.
        Epithelial–mesenchymal transition in colorectal cancer metastasis: a system review.
        Pathol Res Pract. 2015; 211: 557-569https://doi.org/10.1016/j.prp.2015.05.010
        • Zhao M.
        • Ang L.
        • Huang J.
        • et al.
        MicroRNAs regulate the epithelial–mesenchymal transition and influence breast cancer invasion and metastasis.
        Tumour Biol. 2017; 39 (1010428317691682)https://doi.org/10.1177/1010428317691682
        • Zhou J.-J.
        • Zheng S.
        • Sun L.-F.
        • et al.
        MicroRNA regulation network in colorectal cancer metastasis.
        World J Biol Chem. 2014; 5: 301-307https://doi.org/10.4331/wjbc.v5.i3.301
        • Pan Y.
        • Liang H.
        • Chen W.
        • et al.
        microRNA-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs.
        RNA Biol. 2015; 12: 276-289https://doi.org/10.1080/15476286.2015.1017208
        • Toiyama Y.
        • Hur K.
        • Tanaka K.
        • et al.
        Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer.
        Ann Surg. 2014; 259: 735-743https://doi.org/10.1097/SLA.0b013e3182a6909d
        • Shen A.
        • Lin W.
        • Chen Y.
        • et al.
        Pien Tze Huang inhibits metastasis of human colorectal carcinoma cells via modulation of TGF-β1/ZEB/miR–200 signaling network.
        Int J Oncol. 2015; 46: 685-690https://doi.org/10.3892/ijo.2014.2772
        • Hu X.
        • Sui X.
        • Li L.
        • et al.
        Protocadherin 17 acts as a tumour suppressor inducing tumour cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers.
        J Pathol. 2013; 229: 62-73https://doi.org/10.1002/path.4093
        • Diaz T.
        • Moreno I.
        • Monzo M.
        miR-200 family in CRC primary tumors and metastases.
        J Surg Oncol. 2014; 110: 486https://doi.org/10.1002/jso.23683
        • Bojmar L.
        • Karlsson E.
        • Ellegård S.
        • et al.
        The role of microRNA-200 in progression of human colorectal and breast cancer.
        PLoS ONE. 2013; 8: e84815https://doi.org/10.1371/journal.pone.0084815
        • Tian Y.
        • Pan Q.
        • Shang Y.
        • et al.
        MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2): impact on the epithelial-mesenchymal transition in colon cancer cells.
        J Biol Chem. 2014; 289: 36101-36115https://doi.org/10.1074/jbc.M114.598383
        • Hur K.
        • Toiyama Y.
        • Takahashi M.
        • et al.
        MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis.
        Gut. 2013; 62: 1315-1326https://doi.org/10.1136/gutjnl-2011-301846
        • Yamaguchi H.
        Pathological roles of invadopodia in cancer invasion and metastasis.
        Eur J Cell Biol. 2012; 91: 902-907https://doi.org/10.1016/j.ejcb.2012.04.005
        • Malik R.
        • Lelkes P.I.
        • Cukierman E.
        Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer.
        Trends Biotechnol. 2015; 33: 230-236https://doi.org/10.1016/j.tibtech.2015.01.004
        • Bullock M.D.
        • Pickard K.M.
        • Nielsen B.S.
        • et al.
        Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression.
        Cell Death Dis. 2013; 4: e684https://doi.org/10.1038/cddis.2013.213
        • Paterson E.L.
        • Kazenwadel J.
        • Bert A.G.
        • et al.
        Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression.
        Neoplasia. 2013; 15: 180-191
        • Tang W.
        • Zhu Y.
        • Gao J.
        • et al.
        MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4.
        Br J Cancer. 2014; 110: 450-458https://doi.org/10.1038/bjc.2013.724
        • Hu J.
        • Ni S.
        • Cao Y.
        • et al.
        The angiogenic effect of microRNA-21 targeting TIMP3 through the regulation of MMP2 and MMP9.
        PLoS ONE. 2016; 11: e0149537https://doi.org/10.1371/journal.pone.0149537
        • Li L.
        • Li H.
        Role of microRNA-mediated MMP regulation in the treatment and diagnosis of malignant tumors.
        Cancer Biol Ther. 2013; 14: 796-805https://doi.org/10.4161/cbt.25936
        • Gyparaki M.T.
        • Basdra E.K.
        • Papavassiliou A.G.
        DNA methylation biomarkers as diagnostic and prognostic tools in colorectal cancer.
        J Mol Med. 2013; 91: 1249-1256https://doi.org/10.1007/s00109-013-1088-z
        • Lamb Y.N.
        • Dhillon S.
        Epi proColon® 2.0 CE: a blood-based screening test for colorectal cancer.
        Mol Diagn Ther. 2017; 21: 225-232https://doi.org/10.1007/s40291-017-0259-y
        • Ned R.M.
        • Melillo S.
        • Marrone M.
        Fecal DNA testing for colorectal cancer screening: the ColoSure™ test.
        PLoS Curr. 2011; 3: RRN1220https://doi.org/10.1371/currents.RRN1220
        • Kang X.C.
        • Chen M.L.
        • Yang F.
        • et al.
        Promoter methylation and expression of SOCS-1 affect clinical outcome and epithelial-mesenchymal transition in colorectal cancer.
        Biomed Pharmacother. 2016; 80: 23-29https://doi.org/10.1016/j.biopha.2016.02.011
        • Ahn J.B.
        • Chung W.B.
        • Maeda O.
        • et al.
        DNA methylation predicts recurrence from resected stage III proximal colon cancer.
        Cancer. 2011; 117: 1847-1854https://doi.org/10.1002/cncr.25737
        • Zanutto S.
        • Pizzamiglio S.
        • Lampis A.
        • et al.
        Methylation status in patients with early stage colon cancer: a new prognostic marker?.
        Int J Cancer. 2012; 130: 488-489https://doi.org/10.1002/ijc.26011
        • Wang Y.
        • Long Y.
        • Xu Y.
        • et al.
        Prognostic and predictive value of CpG Island Methylator phenotype in Patients with locally advanced nonmetastatic sporadic colorectal cancer.
        Gastroenterol Res Pract. 2014; 2014: 436985https://doi.org/10.1155/2014/436985
        • Cha Y.
        • Kim K.J.
        • Han S.W.
        • et al.
        Adverse prognostic impact of the CpG island methylator phenotype in metastatic colorectal cancer.
        Br J Cancer. 2016; 115: 164-171https://doi.org/10.1038/bjc.2016.176
        • Zhang X.
        • Shimodaira H.
        • Soeda H.
        • et al.
        CpG island methylator phenotype is associated with the efficacy of sequential oxaliplatin-and irinotecan-based chemotherapy and EGFR-related gene mutation in Japanese patients with metastatic colorectal cancer.
        Int J Clin Oncol. 2016; 21: 1091-1101
        • Bae J.M.
        • Kim J.H.
        • Kwak Y.
        • et al.
        Distinct clinical outcomes of two CIMP-positive colorectal cancer subtypes based on a revised CIMP classification system.
        Br J Cancer. 2017; 116: 1012-1020https://doi.org/10.1038/bjc.2017.52
        • Cohen S.A.
        • Wu C.
        • Yu M.
        • et al.
        Evaluation of CpG island methylator phenotype as a biomarker in colorectal cancer treated with adjuvant oxaliplatin.
        Clin Colorectal Cancer. 2016; 15: 164-169https://doi.org/10.1016/j.clcc.2015.10.005
        • Shiovitz S.
        • Bertagnolli M.M.
        • Renfro L.A.
        • et al.
        CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage III colon cancer.
        Gastroenterology. 2014; 147: 637-645https://doi.org/10.1053/j.gastro.2014.05.009
        • Min B.H.
        • Bae J.M.
        • Lee E.J.
        • et al.
        The CpG island methylator phenotype may confer a survival benefit in patients with stage II or III colorectal carcinomas receiving fluoropyrimidine-based adjuvant chemotherapy.
        BMC Cancer. 2011; 11: 344https://doi.org/10.1186/1471-2407-11-344
        • Jover R.
        • Nguyen T.P.
        • Pérez-Carbonell L.
        • et al.
        5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer.
        Gastroenterology. 2011; 140: 1174-1181https://doi.org/10.1053/j.gastro.2010.12.035
        • Lee D.W.
        • Han S.W.
        • Cha Y.
        • et al.
        Different prognostic effect of CpG island methylation according to sex in colorectal cancer patients treated with adjuvant FOLFOX.
        Clin Epigenetics. 2015; 7: 63https://doi.org/10.1186/s13148-015-0106-0
        • Gallois C.
        • Laurent-Puig P.
        • Taieb J.
        Methylator phenotype in colorectal cancer: a prognostic factor or not?.
        Crit Rev Oncol Hematol. 2016; 99: 74-80https://doi.org/10.1016/j.critrevonc.2015.11.001
        • Juo Y.Y.
        • Johnston F.M.
        • Zhang D.Y.
        • et al.
        Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis.
        Ann Oncol. 2014; 25: 2314-2327https://doi.org/10.1093/annonc/mdu149
        • Estey M.P.
        • Di Ciano-Oliveira C.
        • Froese C.D.
        • et al.
        Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission.
        J Cell Biol. 2010; 191: 741-749https://doi.org/10.1083/jcb.201006031
        • Robertson C.
        • Church S.W.
        • Nagar H.A.
        • et al.
        Properties of SEPT9 isoforms and the requirement for GTP binding.
        J Pathol. 2004; 203: 519-527
        • Song L.
        • Li Y.
        SEPT9: a specific circulating biomarker for colorectal cancer.
        Adv Clin Chem. 2015; 72: 171-204https://doi.org/10.1016/bs.acc.2015.07.004
        • Mostowy S.
        • Cossart P.
        Septins: the fourth component of the cytoskeleton.
        Nat Rev Mol Cell Biol. 2012; 13: 183-194
        • Spiliotis E.T.
        • Gladfelter A.S.
        Traffic. Spatial guidance of cell asymmetry: septin GTPases show the way.
        Traffic. 2012; 13: 195-203https://doi.org/10.1111/j.16000854.2011.01268.x
        • Church T.R.
        • Wandell M.
        • Lofton-Day C.
        • et al.
        Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer.
        Gut. 2014; 63: 317-325https://doi.org/10.1136/gutjnl-2012-304149
        • Potter N.T.
        • Hurban P.
        • White M.N.
        • et al.
        Validation of a real-time PCR–based qualitative assay for the detection of methylated SEPT9 DNA in human plasma.
        Clin Chem. 2014; 60: 1183-1191https://doi.org/10.1373/clinchem.2013.221044
        • Johnson D.A.
        • Barclay R.L.
        • Mergener K.
        • et al.
        Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: a prospective multicenter study.
        PLoS ONE. 2014; 9: e98238https://doi.org/10.1371/journal.pone.0098238
        • Song L.
        • Peng X.
        • Li Y.
        • et al.
        The SEPT9 gene methylation assay is capable of detecting colorectal adenoma in opportunistic screening.
        Epigenomics. 2017; 9: 599-610https://doi.org/10.2217/epi-2016-0146
        • Nian J.
        • Sun X.
        • Ming S.
        • et al.
        Diagnostic accuracy of methylated SEPT9 for blood-based colorectal cancer detection: a systematic review and meta-analysis.
        Clin Transl Gastroenterol. 2017; 8: e216https://doi.org/10.1038/ctg.2016.66
        • Song L.
        • Yu H.
        • Jia J.
        • et al.
        A systematic review of the performance of the SEPT9 gene methylation assay in colorectal cancer screening, monitoring, diagnosis and prognosis.
        Cancer Biomark. 2017; 18: 425-432https://doi.org/10.3233/CBM-160321
        • Leduc C.
        • Etienne-Manneville S.
        Intermediate filaments in cell migration and invasion: the unusual suspects.
        Curr Opin Cell Biol. 2015; 32: 102-112https://doi.org/10.1016/j.ceb.2015.01.005
        • Dey P.
        • Togra J.
        • Mitra S.
        Intermediate filament: structure, function, and applications in cytology.
        Diagn Cytopathol. 2014; 42: 628-635https://doi.org/10.1002/dc.23132
        • Leube R.E.
        • Moch M.
        • Windoffer R.
        Intermediate filaments and the regulation of focal adhesion.
        Curr Opin Cell Biol. 2015; 32: 13-20https://doi.org/10.1016/j.ceb.2014.09.011
        • Dmello C.
        • Sawant S.
        • Alam H.
        • et al.
        Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells.
        Int J Biochem Cell Biol. 2016; 70: 161-172https://doi.org/10.1016/j.biocel.2015.11.015
        • Mendez M.G.
        • Kojima S.
        • Goldman R.D.
        Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition.
        FASEB J. 2010; 24: 1838-1851https://doi.org/10.1096/fj.09-151639
        • Satelli A.
        • Li S.
        Vimentin in cancer and its potential as a molecular target for cancer therapy.
        Cell Mol Life Sci. 2011; 68: 3033-3046https://doi.org/10.1007/s00018-011-0735-1
        • Liu C.-Y.
        • Lin H.-H.
        • Tang M.-J.
        • et al.
        Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation.
        Oncotarget. 2015; 6: 15966-15983
        • Li Y.W.
        • Kong F.M.
        • Zhou J.P.
        • et al.
        Aberrant promoter methylation of the vimentin gene may contribute to colorectal carcinogenesis: a meta-analysis.
        Tumour Biol. 2014; 35: 6783-6790https://doi.org/10.1007/s13277-014-1905-1
        • Ahlquist D.A.
        • Sargent D.J.
        • Loprinzi C.L.
        • et al.
        Stool DNA and occult blood testing for screen detection of colorectal neoplasia.
        Ann Intern Med. 2008; 149 (W81): 441-450
        • Baek Y.H.1.
        • Chang E.
        • Kim Y.J.
        • et al.
        Stool methylation-specific polymerase chain reaction assay for the detection of colorectal neoplasia in Korean patients.
        Dis Colon Rectum. 2009; 52: 1452-1459https://doi.org/10.1007/DCR.0b013e3181a79533
        • Chen W.D.
        • Han Z.J.
        • Skoletsky J.
        • et al.
        Detection in fecal DNA of colon cancer–specific methylation of the nonexpressed vimentin gene.
        J Natl Cancer Inst. 2005; 97: 1124-1132
        • Zhang X.
        • Song Y.-F.
        • Lu H.-N.
        • et al.
        Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas.
        World J Gastroenterol. 2015; 21: 2629-2637https://doi.org/10.3748/wjg.v21.i9.2629
        • Perez-Carbonell L.
        • Balaguer F.
        • Toiyama Y.
        • et al.
        IGFBP3 methylation is a novel diagnostic and predictive biomarker in colorectal cancer.
        PLoS ONE. 2014; 9: e104285https://doi.org/10.1371/journal.pone.0104285
        • Ebert M.P.A.
        • Tänzer M.
        • Balluff B.
        • et al.
        TFAP2E-DKK4 and chemoresistance in colorectal cancer.
        N Engl J Med. 2012; 366: 44-53
        • Sawada T.
        • Yamamoto E.
        • Suzuki H.
        • et al.
        Association between genomic alterations and metastatic behavior of colorectal cancer identified by array-based comparative genomic hybridization.
        Genes Chromosomes Cancer. 2013; 52: 140-149https://doi.org/10.1002/gcc.22013
        • Campbell M.J.
        • Turner B.M.
        Altered histone modifications in cancer.
        Adv Exp Med Biol. 2013; 754: 81-107
        • Stypula-Cyrus Y.
        • Damania D.
        • Kunte D.P.
        • et al.
        HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.
        PLoS ONE. 2013; 8: e64600
        • Tamagawa H.
        • Oshima T.
        • Numata M.
        • et al.
        Global histone modification of H3K27 correlates with the outcomes in patients with metachronous liver metastasis of colorectal cancer.
        Eur J Surg Oncol. 2013; 39: 655-661
        • Yokoyama Y.
        • Hieda M.
        • Nishioka Y.
        • et al.
        Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo.
        Cancer Sci. 2013; 104: 889-895
        • Karczmarski J.
        • Rubel T.
        • Paziewska A.
        • et al.
        Histone H3 lysine 27 acetylation is altered in colon cancer.
        Clin Proteomics. 2014; 11: 24
        • Yörüker E.E.
        • Holdenrieder S.
        • Gezer U.
        Blood-based biomarkers for diagnosis, prognosis and treatment of colorectal cancer.
        Clin Chim Acta. 2016; 455: 26-32
        • Goel A.
        • Boland C.R.
        Epigenetics of colorectal cancer.
        Gastroenterology. 2012; 143 (e1): 1442-1460https://doi.org/10.1053/j.gastro.2012.09.032
        • Gezer U.
        • Yörüker E.E.
        • Keskin M.
        • et al.
        Histon methylation marks on circulating nucleosomes as novel blood-based biomarkers in colorectal cancer.
        Int J Mol Sci. 2015; 16: 29654-29662
        • Fahrner J.A.
        • Eguchi S.
        • Herman J.G.
        • et al.
        Dependence of histone modifications and gene expression on DNA hypermethylation in cancer.
        Cancer Res. 2002; 62: 7213-7218
        • Kondo Y.
        • Shen L.
        • Issa J.-P.J.
        Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer.
        Mol Cell Biol. 2003; 23: 206-215
        • West A.C.
        • Johnstone R.W.
        New and emerging HDAC inhibitors for cancer treatment.
        J Clin Invest. 2014; 124: 30-39
        • Clements E.G.
        • Mohammad H.P.
        • Leadem B.R.
        • et al.
        DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes.
        Nucleic Acids Res. 2012; 40: 4334-4346
        • Enroth S.
        • Rada-Iglesisas A.
        • Andersson R.
        • et al.
        Cancer associated epigenetic transitions identified by genome-wide histone methylation binding profiles in human colorectal cancer samples and paired normal mucosa.
        BMC Cancer. 2011; 11: 450https://doi.org/10.1186/1471-2407-11-450
        • Gezer U.
        • Ustek D.
        • Yörüker E.E.
        • et al.
        Characterization of H3K9me3-and H4K20me3-associated circulating nucleosomal DNA by high-throughput sequencing in colorectal cancer.
        Tumour Biol. 2013; 34: 329-336https://doi.org/10.1007/s13277-012-0554-5
        • Goossens-Beumer I.J.
        • Benard A.
        • van Hoesel A.Q.
        • et al.
        Age-dependent clinical prognostic value of histone modifications in colorectal cancer.
        Transl Res. 2015; 165: 578-588https://doi.org/10.1016/j.trsl.2014.11.001
        • Benard A.
        • Goossens-Beumer I.J.
        • van Hoesel A.Q.
        • et al.
        Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer.
        BMC Cancer. 2014; 14: 531https://doi.org/10.1186/1471-2407-14-531
        • Benard A.
        • Goossens-Beumer I.J.
        • van Hoesel A.Q.
        • et al.
        Nuclear expression of histone deacetylases and their histone modifications predicts clinical outcome in colorectal cancer.
        Histopathology. 2015; 66: 270-282https://doi.org/10.1111/his.12534
        • Ceman S.
        • Saugstad J.
        MicroRNAs: meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease.
        Pharmacol Ther. 2011; 130: 26-37
        • Luo X.
        • Burwinkel B.
        • Tao S.
        • et al.
        MicroRNA signatures: novel biomarker for colorectal cancer?.
        Cancer Epidemiol Biomarkers Prev. 2011; 20: 1272-1286
        • Nana-Sinkam S.P.
        • Croce C.M.
        Non-coding RNAs in cancer initiation and progression and as novel biomarkers.
        Mol Oncol. 2011; 5: 483-491
        • Hauptman N.
        • Glavac D.
        MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer.
        Radiol Oncol. 2013; 47: 311-318
        • Ling H.
        • Fabbri M.
        • Calin G.A.
        MicroRNAs and other non-coding RNAs as targets for anticancer drug development.
        Nat Rev Drug Discov. 2013; 12: 847-865
        • Qi P.
        • Du X.
        The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine.
        Mod Pathol. 2013; 26: 155-165
        • Balaguer F.
        • Moreira L.
        • Lozano J.J.
        • et al.
        Colorectal cancers with microsatellite instability display unique miRNA profiles.
        Clin Cancer Res. 2011; 17: 6239-6249
        • Mosakhani N.
        • Sarhadi V.K.
        • Borze I.
        • et al.
        MicroRNA profiling differentiates colorectal cancer according to KRAS status.
        Genes Chromosomes Cancer. 2012; 51: 1-9https://doi.org/10.1002/gcc.20925
        • Kogo R.
        • Shimamura T.
        • Mimori K.
        • et al.
        Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers.
        Cancer Res. 2011; 71: 6320-6326
        • Ge X.
        • Chen Y.
        • Liao X.
        • et al.
        Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer.
        Med Oncol. 2013; 30: 588
        • Ling H.
        • Spizzo R.
        • Atlasi Y.
        • et al.
        CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer.
        Genome Res. 2013; 23: 1446-1461
        • Xiang J.-F.
        • Yin Q.-F.
        • Chen T.
        • et al.
        Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus.
        Cell Res. 2014; 24: 513-531
        • Saus E.
        • Brunet-Vega A.
        • Iraola-Guzmán S.
        • et al.
        Long non-coding RNAs as potential novel prognostic biomarkers in colorectal cancer.
        Front Genet. 2016; 7: 54https://doi.org/10.3389/fgene.2016.00054
        • Leite K.R.
        • Canavez J.M.
        • Reis S.T.
        • et al.
        miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue.
        Urol Oncol. 2011; 29: 533-537https://doi.org/10.1016/j.urolonc.2009.05.008
        • Jung M.
        • Schaefer A.
        • Steiner I.
        • et al.
        Robust microRNA stability in degraded RNA preparations from human tissue and cell samples.
        Clin Chem. 2010; 56: 998-1006https://doi.org/10.1373/clinchem.2009.141580
        • Huang Z.
        • Huang D.
        • Ni S.
        • et al.
        Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer.
        Int J Cancer. 2010; 127: 118-126
        • Luo X.
        • Stock C.
        • Burwinkel B.
        • et al.
        Identification and evaluation of plasma microRNAs for early detection of colorectal cancer.
        PLoS ONE. 2013; 8: e62880https://doi.org/10.1371/journal.pone.0062880
        • Cheng H.
        • Zhang L.
        • Cogdell D.E.
        • et al.
        Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis.
        PLoS ONE. 2011; 6: e17745https://doi.org/10.1371/journal.pone.0017745
        • Link A.
        • Balaguer F.
        • Shen Y.
        • et al.
        Fecal MicroRNAs as novel biomarkers for colon cancer screening.
        Cancer Epidemiol Biomarkers Prev. 2010; 19: 1766-1774https://doi.org/10.1158/1055-9965.EPI-10-0027
        • Koga Y.
        • Yasunaga M.
        • Takahashi A.
        • et al.
        MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening.
        Cancer Prev Res (Phila). 2010; 3: 1435-1442https://doi.org/10.1158/1940-6207.CAPR-10-0036
        • Stiegelbauer V.
        • Perakis S.
        • Deutsch A.
        • et al.
        MicroRNAs as novel predictive biomarkers and therapeutic targets in colorectal cancer.
        World J Gastroenterol. 2014; 20: 11727-11735
        • Karaayvaz M.
        • Zhai H.
        • Ju J.
        miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer.
        Cell Death Dis. 2013; 4: e659
        • Kurokawa K.
        • Tanahashi T.
        • Iima T.
        • et al.
        Role of miR-19b and its target mRNAs in 5-fluorouracil resistance in colon cancer cells.
        J Gastroenterol. 2012; 47: 883-895https://doi.org/10.1007/s00535-012-0547-6
        • Xu P.
        • Zhu Y.
        • Sun B.
        • et al.
        Colorectal cancer characterization and therapeutic target prediction based on microRNA expression profile.
        Sci Rep. 2016; 6: 20616
        • Valeri N.
        • Gasparini P.
        • Fabbri M.
        • et al.
        Modulation of mismatch repair and genomic stability by miR-155.
        Proc Natl Acad Sci USA. 2010; 107: 6982-6987https://doi.org/10.1073/pnas.1002472107
        • Valeri N.
        • Gasparini P.
        • Braconi C.
        • et al.
        MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2).
        Proc Natl Acad Sci USA. 2010; 107: 21098-21103https://doi.org/10.1073/pnas.1015541107
        • Garofalo M.
        • Leva G.D.
        • Croce C.M.
        MicroRNAs as anti-cancer therapy.
        Curr Pharm Des. 2014; 20: 5328-5335
        • Melo S.A.
        • Kalluri R.
        Molecular pathways: microRNAs as cancer therapeutics.
        Clin Cancer Res. 2012; 18: 4234-4239https://doi.org/10.1158/1078-0432.CCR-11-2010
        • Aslam M.I.
        • Patel M.
        • Singh B.
        • et al.
        MicroRNA manipulation in colorectal cancer cells: from laboratory to clinical application.
        J Transl Med. 2012; 10: 128https://doi.org/10.1186/1479-5876-10-128
        • Gandellini P.
        • Profumo V.
        • Folini M.
        • et al.
        MicroRNAs as new therapeutic targets and tools in cancer.
        Expert Opin Ther Targets. 2011; 15: 265-279https://doi.org/10.1517/14728222.2011.550878
        • Vitiello M.
        • Tuccoli A.
        • Poliseno L.
        Long non-coding RNAs in cancer: implications for personalized therapy.
        Cell Oncol (Dordr). 2015; 38: 17-28https://doi.org/10.1007/s13402-014-0180-x
        • Liu X.
        • Liu L.
        • Xu Q.
        • et al.
        MicroRNA as a novel drug target for cancer therapy.
        Expert Opin Biol Ther. 2012; 12: 573-580https://doi.org/10.1517/14712598.2012.671293
        • Haftmann C.
        • Riedel R.
        • Porstner M.
        • et al.
        Direct uptake of Antagomirs and efficient knockdown of miRNA in primary B and T lymphocytes.
        J Immunol Methods. 2015; 426: 128-133
        • Young D.D.
        • Connelly C.M.
        • Grohmann C.
        • et al.
        Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma.
        J Am Chem Soc. 2010; 132: 7976-7981https://doi.org/10.1021/ja910275u
        • Ibrahim A.F.
        • Weirauch U.
        • Thomas M.
        • et al.
        MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma.
        Cancer Res. 2011; 71: 5214-5224https://doi.org/10.1158/0008-5472.CAN-10-4645
        • Stroun M.
        • Maurice P.
        • Vasioukhin V.
        • et al.
        The origin and mechanism of circulating DNA.
        Ann N Y Acad Sci. 2000; 906: 161-168
        • Micalizzi D.S.
        • Haber D.A.
        • Maheswaran S.
        Cancer metastasis through the prism of epithelial-to-mesenchymal transition in circulating tumor cells.
        Mol Oncol. 2017; 11: 770-780https://doi.org/10.1002/1878-0261.12081
        • Ashworth T.
        A case of cancer in which cells similar to those in the tumours were seen in the blood after death.
        Australas Med J. 1869; 14: 146-149
        • Leon S.A.
        • Shapiro B.
        • Sklaroff D.M.
        • et al.
        Free DNA in the serum of cancerpatients and the effect of therapy.
        Cancer Res. 1977; 37: 646-650
        • Andree K.C.
        • van Dalum G.
        • Terstappen L.W.M.M.
        Challenges in circulating tumor cell detection by the CellSearch system.
        Mol Oncol. 2016; 10: 395-407https://doi.org/10.1016/j.molonc.2015.12.002
        • Ferreira M.M.
        • Ramani V.C.
        • Jeffrey S.S.
        Circulating tumor cell technologies.
        Mol Oncol. 2016; 10: 374-394https://doi.org/10.1016/j.molonc.2016.01.007
        • Shen Z.
        • Wu A.
        • Chen X.
        Current detection technologies for circulating tumor cells.
        Chem Soc Rev. 2017; 46: 2038-2056https://doi.org/10.1039/c6cs00803h
        • El Bairi K.
        • Kandhro A.H.
        • Gouri A.
        • et al.
        Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer.
        Cell Oncol (Dordr). 2016; 40: 105-118
        • El Bairi K.
        • Amrani M.
        • Kandhro A.H.
        • et al.
        Prediction of therapy response in ovarian cancer: where are we now?.
        Crit Rev Clin Lab Sci. 2017; 54: 233-266https://doi.org/10.1080/10408363.2017.1313190
        • Perakis S.
        • Speicher M.R.
        Emerging concepts in liquid biopsies.
        BMC Med. 2017; 15: 75https://doi.org/10.1186/s12916-017-0840-6
        • Ulz P.
        • Heitzer E.
        • Geigl J.B.
        • et al.
        Patient monitoring through liquid biopsies using circulating tumor DNA.
        Int J Cancer. 2017; 141: 887-896https://doi.org/10.1002/ijc.30759
        • Bettegowda C.
        • Sausen M.
        • Leary R.J.
        • et al.
        Detection of circulating tumor DNA in early-and late-stage human malignancies.
        Sci Transl Med. 2014; 6: 224ra24https://doi.org/10.1126/scitranslmed.3007094
        • Esposito A.
        • Bardelli A.
        • Criscitiello C.
        • et al.
        Monitoring tumor-derived cell-free DNA in patients with solid tumors: clinical perspectives and research opportunities.
        Cancer Treat Rev. 2014; 40: 648-655https://doi.org/10.1016/j.ctrv.2013.10.003
        • Warton K.
        • Samimi G.
        Methylation of cell-free circulating DNA in the diagnosis of cancer.
        Front Mol Biosci. 2015; 2: 13https://doi.org/10.3389/fmolb.2015.00013
        • Gazzaniga P.
        • Raimondi C.
        • Nicolazzo C.
        • et al.
        The rationale for liquid biopsy in colorectal cancer: a focus on circulating tumor cells.
        Expert Rev Mol Diagn. 2015; 15: 925-932https://doi.org/10.1586/14737159.2015.1045491
        • Wan J.C.M.
        • Massie C.
        • Garcia-Corbacho J.
        • et al.
        Liquid biopsies come of age: towards implementation of circulating tumour DNA.
        Nat Rev Cancer. 2017; 17: 223-238https://doi.org/10.1038/nrc.2017.7
        • Turajlic S.
        • Swanton C.
        Gastrointestinal cancer: tracking tumour evolution through liquid biopsy.
        Nat Rev Clin Oncol. 2015; 12: 565-566https://doi.org/10.1038/nrclinonc.2015.153
        • Crowley E.
        • Di Nicolantonio F.
        • Loupakis F.
        • et al.
        Liquid biopsy: monitoring cancer-genetics in the blood.
        Nat Rev Clin Oncol. 2013; 10: 472-484https://doi.org/10.1038/nrclinonc.2013.110
        • Diaz Jr, L.A.
        • Bardelli A.
        Liquid biopsies: genotyping circulating tumor DNA.
        J Clin Oncol. 2014; 32: 579-586https://doi.org/10.1200/JCO.2012.45.2011
        • Heitzer E.
        • Ulz P.
        • Geigl J.B.
        Circulating tumor DNA as a liquid biopsy for cancer.
        Clin Chem. 2015; 61: 112-123https://doi.org/10.1373/clinchem.2014.222679
        • Rasmussen S.L.
        • Krarup H.B.
        • Sunesen K.G.
        • et al.
        Hypermethylated DNA, a circulating biomarker for colorectal cancer detection.
        PLoS ONE. 2017; 12: e0180809
        • Herbst A.
        • Vdovin N.
        • Gacesa S.
        • et al.
        Methylated free-circulating HPP1 DNA is an early response marker in patients with metastatic colorectal cancer.
        Int J Cancer. 2017; 140: 2134-2144https://doi.org/10.1002/ijc.30625
        • Barault L.
        • Amatu A.
        • Siravegna G.
        • et al.
        Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer.
        Gut. 2017; (gutjnl-2016-313372 [pii])https://doi.org/10.1136/gutjnl-2016-313372
        • Xue G.
        • Lu C.J.
        • Pan S.J.
        • et al.
        DNA hypomethylation of CBS promoter induced by folate deficiency is a potential noninvasive circulating biomarker for colorectal adenocarcinomas.
        Oncotarget. 2017; 8: 51387-51401https://doi.org/10.18632/oncotarget.17988
        • Nagai Y.
        • Sunami E.
        • Yamamoto Y.
        • et al.
        LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer.
        Oncotarget. 2017; 8: 11906-11916https://doi.org/10.18632/oncotarget.14439
        • Garrigou S.
        • Perkins G.
        • Garlan F.
        • et al.
        A study of hypermethylated circulating tumor DNA as a universal colorectal cancer biomarker.
        Clin Chem. 2016; 62: 1129-1139https://doi.org/10.1373/clinchem.2015.253609
        • Amatu A.
        • Barault L.
        • Moutinho C.
        • et al.
        Tumor MGMT promoter hypermethylation changes over time limit temozolomide efficacy in a phase II trial for metastatic colorectal cancer.
        Ann Oncol. 2016; 27: 1062-1067https://doi.org/10.1093/annonc/mdw071
        • Symonds E.L.
        • Pedersen S.K.
        • Baker R.T.
        • et al.
        A blood test for methylated BCAT1 and IKZF1 vs. a fecal immunochemical test for detection of colorectal neoplasia.
        Clin Transl Gastroenterol. 2016; 7: e137https://doi.org/10.1038/ctg.2015.67
        • Mitchell S.M.
        • Ho T.
        • Brown G.S.
        • et al.
        Evaluation of methylation biomarkers for detection of circulating tumor DNA and application to colorectal cancer.
        Genes (Basel). 2016; 7 (E125 [pii])
        • Barault L.
        • Amatu A.
        • Bleeker F.E.
        • et al.
        Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer.
        Ann Oncol. 2015; 26: 1994-1999https://doi.org/10.1093/annonc/mdv272
        • Pedersen S.K.
        • Symonds E.L.
        • Baker R.T.
        • et al.
        Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia.
        BMC Cancer. 2015; 15: 654https://doi.org/10.1186/s12885-015-1674-2
        • Lin P.C.
        • Lin J.K.
        • Lin C.H.
        • et al.
        Clinical relevance of plasma DNA methylation in colorectal cancer patients identified by using a genome-wide high-resolution array.
        Ann Surg Oncol. 2015; 22: S1419-S1427https://doi.org/10.1245/s10434-014-4277-2
        • Philipp A.B.
        • Nagel D.
        • Stieber P.
        • et al.
        Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer.
        BMC Cancer. 2014; 14: 245https://doi.org/10.1186/1471-2407-14-245
        • Philipp A.B.
        • Stieber P.
        • Nagel D.
        • et al.
        Prognostic role of methylated free circulating DNA in colorectal cancer.
        Int J Cancer. 2012; 131: 2308-2319https://doi.org/10.1002/ijc.27505
        • deVos T.
        • Tetzner R.
        • Model F.
        • et al.
        Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer.
        Clin Chem. 2009; 55: 1337-1346https://doi.org/10.1373/clinchem.2008.115808
        • Rex D.K.
        • Boland C.R.
        • Dominitz J.A.
        • et al.
        Colorectal cancer screening: recommendations for physicians and patients from the U.S. Multi-Society Task Force on Colorectal Cancer.
        Gastroenterology. 2017; 153: 307-323
        • Adler A.
        • Geiger S.
        • Keil A.
        • et al.
        Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany.
        BMC Gastroenterol. 2014; 14: 183
        • Hochhauser D.
        • Glynne-Jones R.
        • Potter V.
        • et al.
        A phase II study of temozolomide in patients with advanced aerodigestive tract and colorectal cancers and methylation of the O6-methylguanine-DNA methyltransferase promoter.
        Mol Cancer Ther. 2013; 12: 809-818https://doi.org/10.1158/1535-7163.MCT-12-0710
        • Kazanets A.
        • Shorstova T.
        • Hilmi K.
        • et al.
        Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential.
        Biochim Biophys Acta. 2016; 1865: 275-288https://doi.org/10.1016/j.bbcan.2016.04.001
        • Baxter E.
        • Windloch K.
        • Gannon F.
        • et al.
        Epigenetic regulation in cancer progression.
        Cell Biosci. 2014; 4: 45https://doi.org/10.1186/2045-3701-4-45