Establishing a human adrenocortical carcinoma (ACC)-specific gene mutation signature

      Highlights

      • LRIG1, ZFPM1, CRIPAK, GARS, ZNF517 and DGKZ are driver genes in ACC.
      • ACC-specific gene mutation signature could be useful for therapeutics.
      • LRIG1-regulated EGFR signaling could be key to ACC tumorigenesis.

      Abstract

      Adrenocortical carcinoma (ACC) is a rare and aggressive tumor whose molecular signaling pathways are not fully understood. Using an in-silico clinical data analysis approach we retrieved human gene mutation data from the highly reputed Cancer Genome Atlas (TCGA). ACC-specific gene mutations were correlated with proliferation marker FAM72 expression and Mutsig along with the algorithmic implementation of the 20/20 rule were used to validate their oncogenic potential. The newly identified oncogenic driver gene set (ZFPM1, LRIG1, CRIPAK, ZNF517, GARS and DGKZ), specifically and most repeatedly mutated in ACC, is involved in tumor suppression and cellular proliferation and thus could be useful for the prognosis and development of therapeutic approaches for the treatment of ACC.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fassnacht M
        • Kroiss M
        • Allolio B
        Update in adrenocortical carcinoma.
        J Clin Endocrinol Metab. 2013; 98: 4551-4564
        • Kebebew E
        • et al.
        Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress?.
        World J Surg. 2006; 30: 872-878
        • Kerkhofs TM
        • et al.
        Adrenocortical carcinoma: a population-based study on incidence and survival in the Netherlands since 1993.
        Eur J Cancer. 2013; 49: 2579-2586
        • Creemers SG
        • et al.
        Identification of mutations in cell-free circulating tumor DNA in adrenocortical carcinoma: a case series.
        J Clin Endocrinol Metab. 2017; 102: 3611-3615
        • Lalli E
        • Luconi M
        The next step: mechanisms driving adrenocortical carcinoma metastasis.
        Endocr Relat Cancer. 2018; 25: R31-R48
        • Lambert AW
        • Pattabiraman DR
        • Weinberg RA
        Emerging biological principles of metastasis.
        Cell. 2017; 168: 670-691
        • Else T
        • et al.
        Adrenocortical carcinoma.
        Endocr Rev. 2013; 35: 282-326
        • Beuschlein F
        • et al.
        Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection.
        J Clin Endocrinol Metab. 2015; 100: 841-849
        • Pereira SS
        • et al.
        Mechanisms of endocrinology: cell cycle regulation in adrenocortical carcinoma.
        Eur J Endocrinol. 2018; 179: R95-R110
        • Berthon A
        • et al.
        Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development.
        Hum Mol Genet. 2010; 19: 1561-1576
        • Herrmann LJ
        • et al.
        TP53 germline mutations in adult patients with adrenocortical carcinoma.
        J Clin Endocrinol Metab. 2012; 97: E476-E485
        • Raymond VM
        • et al.
        Prevalence of germline TP53 mutations in a prospective series of unselected patients with adrenocortical carcinoma.
        J Clin Endocrinol Metab. 2013; 98: E119-E125
        • Gaujoux S
        • et al.
        beta-catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma.
        Clin Cancer Res. 2011; 17: 328-336
        • Tissier F
        • et al.
        Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors.
        Cancer Res. 2005; 65: 7622-7627
        • Assie G
        • et al.
        Integrated genomic characterization of adrenocortical carcinoma.
        Nat Genet. 2014; 46: 607-612
        • Zheng S
        • et al.
        Comprehensive pan-genomic characterization of adrenocortical carcinoma.
        Cancer Cell. 2016; 29: 723-736
        • Ragazzon B
        • et al.
        Transcriptome analysis reveals that p53 and β-catenin alterations occur in a group of aggressive adrenocortical cancers.
        Cancer Res. 2010; 70: 8276-8281https://doi.org/10.1158/0008-5472.CAN-10-2014
        • Salomon A
        • et al.
        Loss of beta-catenin in adrenocortical cancer cells causes growth inhibition and reversal of epithelial-to-mesenchymal transition.
        Oncotarget. 2015; 6: 11421-11433
        • Gicquel C
        • et al.
        Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors.
        Cancer Res. 2001; 61: 6762-6767
        • Sbiera S
        • et al.
        High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors.
        J Clin Endocrinol Metab. 2010; 95: E161-E171
        • de Fraipont F
        • et al.
        Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy.
        J Clin Endocrinol Metab. 2005; 90: 1819-1829
        • Giordano TJ
        • et al.
        Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis.
        Am J Pathol. 2003; 162: 521-531
        • Lawrence MS
        • et al.
        Discovery and saturation analysis of cancer genes across 21 tumour types.
        Nature. 2014; 505: 495-501
        • Vogelstein B
        • et al.
        Cancer genome landscapes.
        Science. 2013; 339: 1546-1558
        • Cerami E
        • et al.
        The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.
        Cancer Discov. 2012; 2: 401-404
        • Gao J
        • et al.
        Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
        Sci Signal. 2013; 6: pl1
        • Lawrence MS
        • et al.
        Mutational heterogeneity in cancer and the search for new cancer-associated genes.
        Nature. 2013; 499: 214-218
        • Greenman C
        • et al.
        Patterns of somatic mutation in human cancer genomes.
        Nature. 2007; 446: 153-158
        • Goldman M
        • et al.
        Abstract 2584: The UCSC Xena system for cancer genomics data visualization and interpretation.
        Cancer Res. 2017; 77: 2584https://doi.org/10.1158/1538-7445.AM2017-2584
        • Ho NT
        • et al.
        Cognitive functions: human vs. animal - 4:1 advantage |-FAM72-SRGAP2-|.
        J Mol Neurosci. 2017; 61: 603-606
        • Ho NTT
        • Kutzner A
        • Heese K
        Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2-FAM72-|.
        Biol Chem. 2017; 399: 55-61
        • Kutzner A
        • et al.
        All-or-(N)One - an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci.
        Genomics. 2015; 106: 278-285
        • Rahane CS
        • Kutzner A
        • Heese K
        A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature.
        J Neurooncol. 2018; https://doi.org/10.1007/s11060-018-03029-3
        • Iverson GL
        Z scores.
        (editors)in: Kreutzer JS DeLuca J Caplan B Encyclopedia of clinical neuropsychology. Springer New York, New York, NY2011: 2739-2740
        • Scholzen T
        • Gerdes J
        The Ki-67 protein: from the known and the unknown.
        J Cell Physiol. 2000; 182: 311-322
      1. Team BD. Bokeh: python library for interactive visualization. 2014. Available at: http://www.bokeh.pydata.org.

        • Bland JM
        • Altman DG
        The logrank test.
        BMJ. 2004; 328: 1073
        • Heese K
        The protein p17 signaling pathways in cancer.
        Tumour Biol. 2013; 34: 4081-4087
        • Kou C
        • et al.
        LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a novel epigenetic silenced gene in colorectal cancer.
        Biochem Biophys Res Commun. 2015; 464: 519-525
        • Stutz MA
        • et al.
        LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvIII.
        Oncogene. 2008; 27: 5741-5752
        • Kirschner LS
        • et al.
        Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the carney complex.
        Hum Mol Genet. 2000; 9: 3037-3046
        • Kandoth C
        • et al.
        Mutational landscape and significance across 12 major cancer types.
        Nature. 2013; 502: 333-339
        • Talukder AH
        • Meng Q
        • Kumar R
        CRIPak, a novel endogenous Pak1 inhibitor.
        Oncogene. 2006; 25: 1311-1319
        • Miccio A
        • et al.
        NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development.
        EMBO J. 2010; 29: 442-456
        • Mo Z
        • et al.
        Neddylation requires glycyl-tRNA synthetase to protect activated E2.
        Nat Struct Mol Biol. 2016; 23: 730-737
        • Cao B
        • et al.
        Cancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit.
        Oncotarget. 2017; 8: 90651-90661
        • Topham MK
        • Epand RM
        Mammalian diacylglycerol kinases: molecular interactions and biological functions of selected isoforms.
        Biochim Biophys Acta. 2009; 1790: 416-424
        • Mendoza MC
        • Er EE
        • Blenis J
        The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation.
        Trends Biochem Sci. 2011; 36: 320-328
        • Ong CC
        • et al.
        p21-activated kinase 1: PAK'ed with potential.
        Oncotarget. 2011; 2: 491-496
        • Guo D
        • et al.
        A Rac-cGMP signaling pathway.
        Cell. 2007; 128: 341-355
        • Kumar R
        • Gururaj AE
        • Barnes CJ
        p21-activated kinases in cancer.
        Nat Rev Cancer. 2006; 6: 459-471
        • Semenova G
        • Chernoff J
        Targeting PAK1.
        Biochem Soc Trans. 2017; 45: 79-88
        • Manning BD
        • Toker A
        AKT/PKB signaling: navigating the network.
        Cell. 2017; 169: 381-405
        • Pochampalli MR
        • Bitler BG
        • Schroeder JA
        Transforming growth factor alpha dependent cancer progression is modulated by Muc1.
        Cancer Res. 2007; 67: 6591-6598
        • Borsari S
        • et al.
        Loss of p27 expression is associated with MEN1 gene mutations in sporadic parathyroid adenomas.
        Endocrine. 2017; 55: 386-397
        • Gur G
        • et al.
        LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation.
        EMBO J. 2004; 23: 3270-3281
        • Yokdang N
        • et al.
        LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells.
        Oncogene. 2016; 35: 2932-2947
        • Neirinckx V
        • Hedman H
        • Niclou SP
        Harnessing LRIG1-mediated inhibition of receptor tyrosine kinases for cancer therapy.
        Biochim Biophys Acta. 2017; 1868: 109-116
        • Mao F
        • et al.
        Lrig1 is a haploinsufficient tumor suppressor gene in malignant glioma.
        Oncogenesis. 2018; 7: 13
        • Rouam S
        • Moreau T
        • Broet P
        Identifying common prognostic factors in genomic cancer studies: a novel index for censored outcomes.
        BMC Bioinf. 2010; 11: 150
        • Johansson M
        • et al.
        The soluble form of the tumor suppressor Lrig1 potently inhibits in vivo glioma growth irrespective of EGF receptor status.
        Neuro Oncol. 2013; 15: 1200-1211
        • Qi XC
        • et al.
        LRIG1 dictates the chemo-sensitivity of temozolomide (TMZ) in U251 glioblastoma cells via down-regulation of EGFR/topoisomerase-2/Bcl-2.
        Biochem Biophys Res Commun. 2013; 437: 565-572
        • Wang X
        • et al.
        LRIG1 enhances cisplatin sensitivity of glioma cell lines.
        Oncol Res. 2012; 20: 205-211
        • Mao F
        • et al.
        LRIG proteins in glioma: functional roles, molecular mechanisms, and potential clinical implications.
        J Neurol Sci. 2017; 383: 56-60
        • Guo C
        • et al.
        Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase.
        Cancer Res. 2008; 68: 6118-6126
        • Nehar S
        • Mishra M
        • Heese K
        Identification and characterisation of the novel amyloid-beta peptide-induced protein p17.
        FEBS Lett. 2009; 583: 3247-3253
        • Tanaka M
        • et al.
        Differentiation status dependent function of FOG-1.
        Genes Cells. 2004; 9: 1213-1226
        • Yang HY
        • et al.
        The suppression of zfpm-1 accelerates the erythropoietic differentiation of human CD34+ cells.
        Biochem Biophys Res Commun. 2007; 353: 978-984
        • Marcucci G
        • et al.
        Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a cancer and leukemia group b study.
        J Clin Oncol. 2008; 26: 5078-5087
        • Lejon S
        • et al.
        Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48.FOG-1 complex.
        J Biol Chem. 2011; 286: 1196-1203
        • Li L
        • et al.
        Epigenetic modification of MiR-429 promotes liver tumour-initiating cell properties by targeting Rb binding protein 4.
        Gut. 2015; 64: 156-167
        • He W
        • et al.
        CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase.
        Nature. 2015; 526: 710-714
        • Park MC
        • et al.
        Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis.
        Proc Natl Acad Sci USA. 2012; 109: E640-E647
        • Kim S
        • You S
        • Hwang D
        Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping.
        Nat Rev Cancer. 2011; 11
        • Wasenius VM
        • et al.
        Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study.
        Clin Cancer Res. 2003; 9: 68-75
        • Pagano M
        • et al.
        Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27.
        Science. 1995; 269: 682-685
        • Prince T
        • Williams H
        494 Heat shock protein 90 interactome is highly altered in adrenocortical carcinoma.
        European Urology Supplements. 2016; 15: e494
        • Jen J
        • Wang YC
        Zinc finger proteins in cancer progression.
        J Biomed Sci. 2016; 23: 53
        • Friedman JR
        • et al.
        KAP-1, a novel corepressor for the highly conserved KRAB repression domain.
        Genes Dev. 1996; 10: 2067-2078
        • Lupo A
        • et al.
        KRAB-zinc finger proteins: a repressor family displaying multiple biological functions.
        Curr Genomics. 2013; 14: 268-278
        • Diao J
        • et al.
        Loss of diacylglycerol kinase-zeta inhibits cell proliferation and survival in human gliomas.
        Mol Neurobiol. 2016; 53: 5425-5435