Advertisement

Concurrent chromothripsis events in a case of TP53 depleted acute myeloid leukemia with myelodysplasia-related changes

      Highlights

      • Two concurrent chromothripsis events occurred in a patient with AML-MRC at onset.
      • We found TP53 impairment, known as promoting chromothripsis.
      • Chromothripsis and stepwise alterations concurred towards patient's poor outcome.
      • Genes involved in both aberration types showed altered expression in the patient.

      Abstract

      Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) is a heterogeneous hematological disorder defined by morphological, genetic, and clinical features. Patients with AML-MRC often show cytogenetic changes, which are associated with poor prognosis. Straightforward criteria for AML-MRC diagnosis and a more rigorous characterization of the genetic abnormalities accompanying this disease are needed. Here we describe an informative AML-MRC case, showing two separate, but concurrent, chromothripsis events, occurred at the onset of the tumor, and originating an unbalanced t(5;7) translocation and a derivative chromosome 12 with a highly rearranged short arm. Conversely, despite chromothripsis has been often associated with genomic amplification in cancer, in this case a large marker chromosome harboring amplified sequences from chromosomes 19 and 22 arose from a stepwise mechanism. Notably, the patient also showed a TP53 mutated status, known to be associated with an increased susceptibility towards chromothripsis and a poor prognosis. Our results indicate that multiple chromothripsis events may occur early in neoplastic transformation and act in a synergistic way with progressive chromosomal alterations to determine a dramatic impact on disease outcome, as suggested by the gene expression profile analysis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arber D.A.
        • Orazi A.
        • Hasserjian R.
        • Thiele J.
        • Borowitz M.J.
        • Le Beau M.M.
        • Bloomfield C.D.
        • Cazzola M.
        • Vardiman J.W.
        The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia.
        Blood. 2016; 127: 2391-2405https://doi.org/10.1182/blood-2016-03-643544
        • Vardiman J.
        • Reichard K.
        Acute myeloid leukemia with myelodysplasia-related changes.
        Am J Clin Pathol. 2015; 144: 29-43https://doi.org/10.1309/AJCP58RSMFRHLHHH
        • Fontana M.C.
        • Marconi G.
        • Feenstra J.D.M.
        • Fonzi E.
        • Papayannidis C.
        • Ghelli Luserna di Rora A.
        • Padella A.
        • Solli V.
        • Franchini E.
        • Ottaviani E.
        • Ferrari A.
        • Baldazzi C.
        • Testoni N.
        • Iacobucci I.
        • Soverini S.
        • Haferlach T.
        • Guadagnuolo V.
        • Semerad L.
        • Doubek M.
        • Steurer M.
        • Racil Z.
        • Paolini S.
        • Manfrini M.
        • Cavo M.
        • Simonetti G.
        • Kralovics R.
        • Martinelli G.
        Chromothripsis in acute myeloid leukemia: biological features and impact on survival.
        Leukemia. 2018; 32: 1609-1620https://doi.org/10.1038/s41375-018-0035-y
        • Rucker F.G.
        • Dolnik A.
        • Blatte T.J.
        • Teleanu V.
        • Ernst A.
        • Thol F.
        • Heuser M.
        • Ganser A.
        • Dohner H.
        • Dohner K.
        • Bullinger L.
        Chromothripsis is linked to TP53 alteration, cell cycle impairment, and dismal outcome in acute myeloid leukemia with complex karyotype.
        Haematologica. 2018; 103: e17-e20https://doi.org/10.3324/haematol.2017.180497
        • Bochtler T.
        • Granzow M.
        • Stolzel F.
        • Kunz C.
        • Mohr B.
        • Kartal-Kaess M.
        • Hinderhofer K.
        • Heilig C.E.
        • Kramer M.
        • Thiede C.
        • Endris V.
        • Kirchner M.
        • Stenzinger A.
        • Benner A.
        • Bornhauser M.
        • Ehninger G.
        • Ho A.D.
        • Jauch A.
        • Kramer A.
        Marker chromosomes can arise from chromothripsis and predict adverse prognosis in acute myeloid leukemia.
        Blood. 2017; 129: 1333-1342https://doi.org/10.1182/blood-2016-09-738161
        • Rausch T.
        • Jones D.T.
        • Zapatka M.
        • Stutz A.M.
        • Zichner T.
        • Weischenfeldt J.
        • Jager N.
        • Remke M.
        • Shih D.
        • Northcott P.A.
        • Pfaff E.
        • Tica J.
        • Wang Q.
        • Massimi L.
        • Witt H.
        • Bender S.
        • Pleier S.
        • Cin H.
        • Hawkins C.
        • Beck C.
        • von Deimling A.
        • Hans V.
        • Brors B.
        • Eils R.
        • Scheurlen W.
        • Blake J.
        • Benes V.
        • Kulozik A.E.
        • Witt O.
        • Martin D.
        • Zhang C.
        • Porat R.
        • Merino D.M.
        • Wasserman J.
        • Jabado N.
        • Fontebasso A.
        • Bullinger L.
        • Rucker F.G.
        • Dohner K.
        • Dohner H.
        • Koster J.
        • Molenaar J.J.
        • Versteeg R.
        • Kool M.
        • Tabori U.
        • Malkin D.
        • Korshunov A.
        • Taylor M.D.
        • Lichter P.
        • Pfister S.M.
        • Korbel J.O.
        Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations.
        Cell. 2012; 148: 59-71https://doi.org/10.1016/j.cell.2011.12.013
        • Storlazzi C.T.
        • Fioretos T.
        • Surace C.
        • Lonoce A.
        • Mastrorilli A.
        • Strombeck B.
        • D'Addabbo P.
        • Iacovelli F.
        • Minervini C.
        • Aventin A.
        • Dastugue N.
        • Fonatsch C.
        • Hagemeijer A.
        • Jotterand M.
        • Muhlematter D.
        • Lafage-Pochitaloff M.
        • Nguyen-Khac F.
        • Schoch C.
        • Slovak M.L.
        • Smith A.
        • Sole F.
        • Van Roy N.
        • Johansson B.
        • Rocchi M.
        MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene.
        Hum Mol Genet. 2006; 15: 933-942https://doi.org/10.1093/hmg/ddl010
        • Macchia G.
        • Severgnini M.
        • Purgato S.
        • Tolomeo D.
        • Casciaro H.
        • Cifola I.
        • L'Abbate A.
        • Loverro A.
        • Palumbo O.
        • Carella M.
        • Bianchini L.
        • Perini G.
        • De Bellis G.
        • Mertens F.
        • Rocchi M.
        • Storlazzi C.T.
        The hidden genomic and transcriptomic plasticity of giant marker chromosomes in cancer.
        Genetics. 2018; 208: 951-961https://doi.org/10.1534/genetics.117.300552
        • Rausch T.
        • Zichner T.
        • Schlattl A.
        • Stutz A.M.
        • Benes V.
        • Korbel J.O.
        DELLY: structural variant discovery by integrated paired-end and split-read analysis.
        Bioinformatics. 2012; 28 (i333-i9)https://doi.org/10.1093/bioinformatics/bts378
        • Korbel J.O.
        • Campbell P.J.
        Criteria for inference of chromothripsis in cancer genomes.
        Cell. 2013; 152: 1226-1236https://doi.org/10.1016/j.cell.2013.02.023
      1. A LA, Tolomeo D, Cifola I, Severgnini M, Turchiano A, Augello B, Squeo G, P D.A. MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. 2018;32:2152–66. doi:10.1038/s41375-018-0177-y.

        • Cingolani P.
        • Platts A.
        • Wang le L.
        • Coon M.
        • Nguyen T.
        • Wang L.
        • Land S.J.
        • Lu X.
        • Ruden D.M.
        A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: sNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3.
        Fly (Austin). 2012; 6: 80-92https://doi.org/10.4161/fly.19695
        • Forbes S.A.
        • Beare D.
        • Gunasekaran P.
        • Leung K.
        • Bindal N.
        • Boutselakis H.
        • Ding M.
        • Bamford S.
        • Cole C.
        • Ward S.
        • Kok C.Y.
        • Jia M.
        • De T.
        • Teague J.W.
        • Stratton M.R.
        • McDermott U.
        • Campbell P.J.
        COSMIC: exploring the world's knowledge of somatic mutations in human cancer.
        Nucl Acids Res. 2015; 43: D805-D811https://doi.org/10.1093/nar/gku1075
        • Shihab H.A.
        • Gough J.
        • Cooper D.N.
        • Stenson P.D.
        • Barker G.L.
        • Edwards K.J.
        • Day I.N.
        • Gaunt T.R.
        Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden markov models.
        Hum Mutat. 2013; 34: 57-65https://doi.org/10.1002/humu.22225
        • Hongyo T.
        • Hoshida Y.
        • Nakatsuka S.
        • Syaifudin M.
        • Kojya S.
        • Yang W.I.
        • Min Y.H.
        • Chan H.
        • Kim C.H.
        • Harabuchi Y.
        • Himi T.
        • Inuyama M.
        • Aozasa K.
        • Nomura T.
        p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in korea and japan.
        Oncol Rep. 2005; 13: 265-271https://doi.org/10.3892/or.13.2.265
        • Metzeler K.H.
        • Herold T.
        • Rothenberg-Thurley M.
        • Amler S.
        • Sauerland M.C.
        • Gorlich D.
        • Schneider S.
        • Konstandin N.P.
        • Dufour A.
        • Braundl K.
        • Ksienzyk B.
        • Zellmeier E.
        • Hartmann L.
        • Greif P.A.
        • Fiegl M.
        • Subklewe M.
        • Bohlander S.K.
        • Krug U.
        • Faldum A.
        • Berdel W.E.
        • Wormann B.
        • Buchner T.
        • Hiddemann W.
        • Braess J.
        • Spiekermann K.
        Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia.
        Blood. 2016; 128: 686-698https://doi.org/10.1182/blood-2016-01-693879
        • Stroncek D.F.
        • Caruccio L.
        • Bettinotti M.
        CD177: a member of the Ly-6 gene superfamily involved with neutrophil proliferation and polycythemia vera.
        J Transl Med. 2004; 2: 8https://doi.org/10.1186/1479-5876-2-8
        • Virgo P.
        • Denning-Kendall P.A.
        • Erickson-Miller C.L.
        • Singha S.
        • Evely R.
        • Hows J.M.
        • Freeman S.D.
        Identification of the CD33-related SIGLEC receptor, Siglec-5 (CD170), as a useful marker in both normal myelopoiesis and acute myeloid leukaemias.
        Br J Haematol. 2003; 123: 420-430https://doi.org/10.1046/j.1365-2141.2003.04625.x
        • Du X.
        • Turner N.
        • Yang H.
        The role of oxysterol-binding protein and its related proteins in cancer.
        Semin Cell Dev Biol. 2018; 81: 149-153https://doi.org/10.1016/j.semcdb.2017.07.017
        • Pardee T.S.
        Overexpression of MN1 confers resistance to chemotherapy, accelerates leukemia onset, and suppresses p53 and bim induction.
        PLoS ONE. 2012; 7: e43185https://doi.org/10.1371/journal.pone.0043185
        • Hosono N.
        • Makishima H.
        • Mahfouz R.
        • Przychodzen B.
        • Yoshida K.
        • Jerez A.
        • LaFramboise T.
        • Polprasert C.
        • Clemente M.J.
        • Shiraishi Y.
        • Chiba K.
        • Tanaka H.
        • Miyano S.
        • Sanada M.
        • Cui E.
        • Verma A.K.
        • McDevitt M.A.
        • List A.F.
        • Saunthararajah Y.
        • Sekeres M.A.
        • Boultwood J.
        • Ogawa S.
        • Maciejewski J.P.
        Recurrent genetic defects on chromosome 5q in myeloid neoplasms.
        Oncotarget. 2017; 8: 6483-6495https://doi.org/10.18632/oncotarget.14130
        • Bhaskara S.
        • Knutson S.K.
        • Jiang G.
        • Chandrasekharan M.B.
        • Wilson A.J.
        • Zheng S.
        • Yenamandra A.
        • Locke K.
        • Yuan J.L.
        • Bonine-Summers A.R.
        • Wells C.E.
        • Kaiser J.F.
        • Washington M.K.
        • Zhao Z.
        • Wagner F.F.
        • Sun Z.W.
        • Xia F.
        • Holson E.B.
        • Khabele D.
        • Hiebert S.W.
        Hdac3 is essential for the maintenance of chromatin structure and genome stability.
        Cancer Cell. 2010; 18: 436-447https://doi.org/10.1016/j.ccr.2010.10.022
        • McNerney M.E.
        • Brown C.D.
        • Wang X.
        • Bartom E.T.
        • Karmakar S.
        • Bandlamudi C.
        • Yu S.
        • Ko J.
        • Sandall B.P.
        • Stricker T.
        • Anastasi J.
        • Grossman R.L.
        • Cunningham J.M.
        • Le Beau M.M.
        • White K.P.
        CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia.
        Blood. 2013; 121: 975-983https://doi.org/10.1182/blood-2012-04-426965
        • Blair L.P.
        • Cao J.
        • Zou M.R.
        • Sayegh J.
        • Yan Q.
        Epigenetic regulation by lysine demethylase 5 (KDM5) enzymes in cancer.
        Cancers (Basel). 2011; 3: 1383-1404https://doi.org/10.3390/cancers3011383