Advertisement

Potential role of microRNAs in the treatment and diagnosis of cervical cancer

Published:September 21, 2020DOI:https://doi.org/10.1016/j.cancergen.2020.09.003

      Highlights

      • Aberrant miRNA expression is observed commonly in tumors.
      • miRNA may have roles in the pathogenesis of cervical cancer.
      • Combination with miRNA may be more appropriate for diagnosis of different stages of cervical cancer.

      Abstract

      Invasive cervical cancer is a leading cause of cancer death in women worldwide. miRNA may have roles in the pathogenesis of cervical cancer based on the increases or decreases in several specific miRNAs found in patients with this disease. The clinical outcomes of cervical cancer vary significantly and are difficult to predict. One unique challenge in cervical cancer biomarker study is the lack of large amounts of tumor tissues because most cervix biopsies are relatively small. The miRNA can affect HPV DNA replication shed more light on our understanding of the HPV life cycle and the mechanistic underpinnings of HPV induced oncogenesis. Also, miRNA processing proteins may be involved during early cervical cancer development. The E6 and E7 oncoproteins of HPV could induce the overexpression of DNA methyltransferase enzymes, which can catalyze the aberrant methylation of protein-coding and miRNA genes. Methods for diagnosis of cervical cancer include analysis of changes in the levels of specific miRNAs in serum and determination of aberrant hypermethylation of miRNAs. miRNAs are related on drug resistance and may be useful in combination therapy for cervical cancer with other drugs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Richart RM.
        A modified terminology for cervical intraepithelial neoplasia.
        Obstet Gynecol. 1990; 75: 131-133
        • Schiffman M
        • Wentzensen N
        • Wacholder S
        • Kinney W
        • Gage JC
        • Castle PE
        Human papillomavirus testing in the prevention of cervical cancer.
        J Natl Cancer Inst. 2011; 103: 368-383
        • Cancer Genome Atlas Research N
        • Albert Einstein College of M
        • Analytical Biological S
        • Barretos Cancer H
        • Baylor College of M
        • Beckman Research Institute of City of H
        Integrated genomic and molecular characterization of cervical cancer.
        Nature. 2017; 543: 378-384
        • Uyar D
        • Rader J.
        Genomics of cervical cancer and the role of human papillomavirus pathobiology.
        Clin Chem. 2014; 60: 144-146
        • McCredie MR
        • Paul C
        • Sharples KJ
        • Baranyai J
        • Medley G
        • Skegg DC
        • et al.
        Consequences in women of participating in a study of the natural history of cervical intraepithelial neoplasia 3.
        Aust N Z J Obstet Gynaecol. 2010; 50: 363-370
        • Ronco G
        • Dillner J
        • Elfstrom KM
        • Tunesi S
        • Snijders PJ
        • Arbyn M
        • et al.
        Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials.
        Lancet. 2014; 383: 524-532
        • Ambros V.
        The functions of animal microRNAs.
        Nature. 2004; 431: 350-355
        • Jain CK
        • Gupta A
        • Dogra N
        • Kumar VS
        • Wadhwa G
        • Sharma SK
        MicroRNA therapeutics: the emerging anticancer strategies.
        Recent Pat Anticancer Drug Discov. 2014; 9: 286-296
        • Lin S
        • Gregory RI.
        MicroRNA biogenesis pathways in cancer.
        Nat Rev Cancer. 2015; 15: 321-333
        • Zheng ZM
        • Wang X.
        Regulation of cellular miRNA expression by human papillomaviruses.
        Biochim Biophys Acta. 2011; 1809: 668-677
        • Deftereos G
        • Corrie SR
        • Feng Q
        • Morihara J
        • Stern J
        • Hawes SE
        • et al.
        Expression of mir-21 and mir-143 in cervical specimens ranging from histologically normal through to invasive cervical cancer.
        PLoS One. 2011; 6: e28423
        • Shishodia G
        • Shukla S
        • Srivastava Y
        • Masaldan S
        • Mehta S
        • Bhambhani S
        • et al.
        Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis.
        Mol Cancer. 2015; 14: 116
        • Wilting SM
        • Snijders PJ
        • Verlaat W
        • Jaspers A
        • van de Wiel MA
        • van Wieringen WN
        • et al.
        Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis.
        Oncogene. 2013; 32: 106-116
        • Sheedy FJ.
        Turning 21: induction of miR-21 as a key switch in the inflammatory response.
        Front Immunol. 2015; 6: 19
        • Huang Y
        • He Y
        • Li J
        MicroRNA-21: a central regulator of fibrotic diseases via various targets.
        Curr Pharm Des. 2015; 21: 2236-2242
        • Iliopoulos D
        • Jaeger SA
        • Hirsch HA
        • Bulyk ML
        • Struhl K
        STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer.
        Mol Cell. 2010; 39: 493-506
        • Shukla S
        • Shishodia G
        • Mahata S
        • Hedau S
        • Pandey A
        • Bhambhani S
        • et al.
        Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection.
        Mol Cancer. 2010; 9: 282
        • Yang CH
        • Yue J
        • Fan M
        • Pfeffer LM
        IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis.
        Cancer Res. 2010; 70: 8108-8116
        • Sobti RC
        • Singh N
        • Hussain S
        • Suri V
        • Bharti AC
        • Das BC
        Overexpression of STAT3 in HPV-mediated cervical cancer in a north Indian population.
        Mol Cell Biochem. 2009; 330: 193-199
        • Gocze K
        • Gombos K
        • Kovacs K
        • Juhasz K
        • Gocze P
        • Kiss I
        MicroRNA expressions in HPV-induced cervical dysplasia and cancer.
        Anticancer Res. 2015; 35: 523-530
        • Hu X
        • Schwarz JK
        • Lewis Jr., JS
        • Huettner PC
        • Rader JS
        • Deasy JO
        • et al.
        A microRNA expression signature for cervical cancer prognosis.
        Cancer Res. 2010; 70: 1441-1448
        • Di Leva G
        • Croce CM
        Roles of small RNAs in tumor formation.
        Trends Mol Med. 2010; 16: 257-267
        • Stokowy T
        • Eszlinger M
        • Swierniak M
        • Fujarewicz K
        • Jarzab B
        • Paschke R
        • et al.
        Analysis options for high-throughput sequencing in miRNA expression profiling.
        BMC Res Notes. 2014; 7: 144
        • Jimenez-Wences H
        • Martinez-Carrillo DN
        • Peralta-Zaragoza O
        • Campos-Viguri GE
        • Hernandez-Sotelo D
        • Jimenez-Lopez MA
        • et al.
        Methylation and expression of miRNAs in precancerous lesions and cervical cancer with HPV16 infection.
        Oncol Rep. 2016; 35: 2297-2305
        • Li Y
        • Wang F
        • Xu J
        • Ye F
        • Shen Y
        • Zhou J
        • et al.
        Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29.
        J Pathol. 2011; 224: 484-495
        • Chen R
        • Zhang L.
        MiR-29a inhibits cell proliferation and migration by targeting the CDC42/PAK1 signaling pathway in cervical cancer.
        Anticancer Drugs. 2019; 30: 579-587
        • Gong Y
        • Wan JH
        • Zou W
        • Lian GY
        • Qin JL
        • Wang QM
        MiR-29a inhibits invasion and metastasis of cervical cancer via modulating methylation of tumor suppressor SOCS1.
        Future Oncol. 2019; 15: 1729-1744
        • Cheung TH
        • Man KN
        • Yu MY
        • Yim SF
        • Siu NS
        • Lo KW
        • et al.
        Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm.
        Cell Cycle. 2012; 11: 2876-2884
        • Pereira PM
        • Marques JP
        • Soares AR
        • Carreto L
        • Santos MA
        MicroRNA expression variability in human cervical tissues.
        PLoS One. 2010; 5: e11780
        • Au Yeung CL
        • Tsang TY
        • Yau PL
        • Kwok TT
        Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway.
        Oncogene. 2011; 30: 2401-2410
        • Li B
        • Hu Y
        • Ye F
        • Li Y
        • Lv W
        • Xie X
        Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection.
        Int J Gynecol Cancer. 2010; 20: 597-604
        • Han J
        • Huo M
        • Mu M
        • Liu J
        • Zhang J
        [miR-497 suppresses proliferation of human cervical carcinoma HeLa cells by targeting cyclin E1].
        Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2014; 30: 597-600
        • Thomas LK
        • Bermejo JL
        • Vinokurova S
        • Jensen K
        • Bierkens M
        • Steenbergen R
        • et al.
        Chromosomal gains and losses in human papillomavirus-associated neoplasia of the lower genital tract – a systematic review and meta-analysis.
        Eur J Cancer. 2014; 50: 85-98
        • Liu F
        • Zhang S
        • Zhao Z
        • Mao X
        • Huang J
        • Wu Z
        • et al.
        MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer.
        Oncotarget. 2016; 7: 19666-19679
        • Harden ME
        • Munger K.
        Perturbation of DROSHA and DICER expression by human papillomavirus 16 oncoproteins.
        Virology. 2017; 507: 192-198
        • He L
        • Wang HY
        • Zhang L
        • Huang L
        • Li JD
        • Xiong Y
        • et al.
        Prognostic significance of low DICER expression regulated by miR-130a in cervical cancer.
        Cell Death Dis. 2014; 5: e1205
        • Zhao H
        • Jin X
        • Su H
        • Deng X
        • Fang Y
        • Shen L
        • et al.
        Down-regulation of Dicer expression in cervical cancer tissues.
        Med Oncol. 2014; 31: 937
        • Guo J
        • Lv J
        • Liu M
        • Tang H
        miR-346 Up-regulates Argonaute 2 (AGO2) protein expression to augment the activity of other MicroRNAs (miRNAs) and contributes to cervical cancer cell malignancy.
        J Biol Chem. 2015; 290: 30342-30350
        • Castanotto D
        • Zhang X
        • Alluin J
        • Zhang X
        • Ruger J
        • Armstrong B
        • et al.
        A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus.
        Proc Natl Acad Sci USA. 2018; 115: E5756-E5E65
        • Sharma NR
        • Wang X
        • Majerciak V
        • Ajiro M
        • Kruhlak M
        • Meyers C
        • et al.
        Cell type- and tissue context-dependent nuclear distribution of human Ago2.
        J Biol Chem. 2016; 291: 2302-2309
        • Bock C
        Epigenetic biomarker development.
        Epigenomics. 2009; 1: 99-110
        • Whiteside MA
        • Siegel EM
        • Unger ER
        Human papillomavirus and molecular considerations for cancer risk.
        Cancer. 2008; 113: 2981-2994
        • Au Yeung CL
        • Tsang WP
        • Tsang TY
        • Co NN
        • Yau PL
        • Kwok TT
        HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53.
        Oncol Rep. 2010; 24: 1599-1604
        • Lin RK
        • Wu CY
        • Chang JW
        • Juan LJ
        • Hsu HS
        • Chen CY
        • et al.
        Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer.
        Cancer Res. 2010; 70: 5807-5817
        • Leonard SM
        • Wei W
        • Collins SI
        • Pereira M
        • Diyaf A
        • Constandinou-Williams C
        • et al.
        Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women.
        Carcinogenesis. 2012; 33: 1286-1293
        • Yao T
        • Rao Q
        • Liu L
        • Zheng C
        • Xie Q
        • Liang J
        • et al.
        Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in cervical cancer.
        Virol J. 2013; 10: 175
        • Botezatu A
        • Goia-Rusanu CD
        • Iancu IV
        • Huica I
        • Plesa A
        • Socolov D
        • et al.
        Quantitative analysis of the relationship between microRNA124a, -34b and -203 gene methylation and cervical oncogenesis.
        Mol Med Rep. 2011; 4: 121-128
        • Wilting SM
        • van Boerdonk RA
        • Henken FE
        • Meijer CJ
        • Diosdado B
        • Meijer GA
        • et al.
        Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer.
        Mol Cancer. 2010; 9: 167
        • Wilting SM
        • Verlaat W
        • Jaspers A
        • Makazaji NA
        • Agami R
        • Meijer CJ
        • et al.
        Methylation-mediated transcriptional repression of microRNAs during cervical carcinogenesis.
        Epigenetics. 2013; 8: 220-228
        • Feng C
        • Dong J
        • Chang W
        • Cui M
        • Xu T
        The progress of methylation regulation in gene expression of cervical cancer.
        Int J Genom. 2018; 20188260652
        • Varghese VK
        • Shukla V
        • Kabekkodu SP
        • Pandey D
        • Satyamoorthy K
        DNA methylation regulated microRNAs in human cervical cancer.
        Mol Carcinog. 2018; 57: 370-382
        • Valadi H
        • Ekstrom K
        • Bossios A
        • Sjostrand M
        • Lee JJ
        • Lotvall JO
        Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.
        Nat Cell Biol. 2007; 9: 654-659
        • Phuah NH
        • In LL
        • Azmi MN
        • Ibrahim H
        • Awang K
        • Nagoor NH
        Alterations of microRNA expression patterns in human cervical carcinoma cells (Ca Ski) toward 1′S-1′-acetoxychavicol acetate and cisplatin.
        Reprod Sci. 2013; 20: 567-578
        • Wang F
        • Liu M
        • Li X
        • Tang H
        MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells.
        FEBS Lett. 2013; 587: 488-495
        • Li J
        • Ping Z
        • Ning H
        MiR-218 impairs tumor growth and increases chemo-sensitivity to cisplatin in cervical cancer.
        Int J Mol Sci. 2012; 13: 16053-16064
        • Shen Y
        • Wang P
        • Li Y
        • Ye F
        • Wang F
        • Wan X
        • et al.
        miR-375 is upregulated in acquired paclitaxel resistance in cervical cancer.
        Br J Cancer. 2013; 109: 92-99
        • Sato F
        • Tsuchiya S
        • Terasawa K
        • Tsujimoto G
        Intra-platform repeatability and inter-platform comparability of microRNA microarray technology.
        PLoS One. 2009; 4: e5540
        • Git A
        • Dvinge H
        • Salmon-Divon M
        • Osborne M
        • Kutter C
        • Hadfield J
        • et al.
        Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression.
        RNA. 2010; 16: 991-1006