First report of t(5;11) KMT2A-MAML1 fusion in de novo infant acute lymphoblastic leukemia

Published:September 21, 2020DOI:


      • Novel translocation t(5;11)(q35;q23) detected in the context of de novo infant ALL.
      • RNA sequencing performed via our institutional childhood cancer sequencing (KiCS) program confirmed translocation t(5;11)(q35;q23) resulting in the formation of KMT2A-MAML1 gene fusion. The breakpoints were 11q23 and 5q35, wherein no KMT2A partner genes have been previously reported.
      • Patient continues to be in remission 22 months from diagnosis, but longer-term follow-up will be essential to determine prognostic significance.


      Infant acute lymphoblastic leukemia (ALL) comprises 2.5%–5% of pediatric ALL with inferior survival compared to older children. A majority of infants (80%) with ALL harbor KMT2A gene rearrangement, which portends a poor prognosis. Approximately 94 different partner genes have been identified to date. The common rearrangements include t(4;11)(q21;q23)KMT2A-AFF1,t(11;19) (q23;p13.3)KMT2A-MLLT1 and t(9;11)(p22;q23)KMT2A-MLLT3. We report a novel translocation t(5;11)(q35;q23)KMT2A-MAML1 in newly diagnosed infant precursor B-ALL. Long-term follow-up and a larger number of patients are needed to better understand its prognostic significance.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Biondi A
        • Cimino G
        • Pieters R
        • Pui CH
        Biological and therapeutic aspects of infant leukemia.
        Blood. 2000; 96: 24-33
        • Borkhardt A
        • Wuchter C
        • Viehmann S,Pils S
        • Teigler-Schlegel A
        • Stanulla M
        • et al.
        Infant acute lymphoblastic leukemia: combined cytogenetic, immunophenotypical and molecular analysis of 77 cases.
        Leukemia. 2002; 16 (http://): 1685-1690
        • Mann G
        • Attarbaschi A
        • Schrappe M
        • Lorenzo PD
        • Peters C
        • Hann I
        • et al.
        Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed -lineage -leukemia (MLL)-rearranged acute lymphoblastic leukemia: results from the Interfant -99 Study.
        Blood. 2010; 116 (https://DOI:): 2644-2650
        • Rao RC
        • Dou Y.
        Hijacked in cancer: the KMT2A(MLL) family of methyltransferases.
        Nat Rev Cancer. 2015; 15 (http://DOI:): 334-346
        • Wilkinson AC
        • Ballabio E
        • Geng H
        • North P
        • Tapia M
        • Kerry J
        • et al.
        RUNX1 is a key target in t(4,11) leukemias that contributes to gene activation through an AF4-MLL complex interaction.
        Cell Rep. 2013; 3 (http://DOI:): 116-127
      1. Winters AC and Bernt KM. MLL -rearranged leukemias-an update on science and clinical approaches. Front.Pediatr. 5: 4. http://DOI:10.3389/fped.2017.00004.

        • Meyer C
        • Burmeister T
        • Groger D
        • Tsaur G
        • Fechina L
        • Renneville A
        • et al.
        The MLL recombinome of acute leukemias in 2017.
        Leukemia. 2018; 32 (http://DOI:): 273-284
        • Pieters R
        • Lorenzo PD
        • Ancliffe P
        • Aversa LA
        • Brethon B
        • Biondi A
        • et al.
        Outcome of infants younger than 1 year with acute lymphoblastic leukaemia treated with the interfant-06 protocol: results from an international phase III randomized study..
        JCO. 2019; 37 (http://DOI:): 2246-2256
        • Nemoto N
        • Suzukawa K
        • Shimizu S
        • Shinagawa A
        • Taki N
        • Taki T
        • et al.
        Identification of a novel fusion gene MLL-MAML2 in secondary acute myelogenous leukemia and myelodysplastic syndrome with inv(11)(q23q23).
        Genes Chromosomes Cancer. 2007; 46 (http://DOI:): 813-819
        • Menu E
        • Beaufils N
        • Usseglio F
        • Balducci E
        • Lafage Pochitaloff M
        • Costello R
        • et al.
        First case of B ALL with KMT2A -MAML2 rearrangement: a case report.
        BMC Cancer. 2017; 17 (http:// DOI:): 363
        • Zhao Y
        • Katzman RB
        • Delmolino LM
        • Bhat I
        • Zhang I
        • Gurumurthy CB
        • et al.
        The notch regulator MAML1 interacts with p53 and functions as a coactivator.
        J Biol Chem. 2007; 282 (http://DOI:): 11969-11981
        • Oyama T
        • Harigaya K
        • Muradil A
        • Hozumi K
        • Habu S
        • Oguro H
        • et al.
        Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo.
        Proc Natl Acad Sci US A. 2007; 104 (http://DOI:): 9764-9769
        • Cheng H
        • Chen L
        • Hu X
        • Qiu H
        • Xu X
        • Gao L
        • et al.
        Knockdown of MAML1 inhibits proliferation and induces apoptosis of T -cell acute lymphoblastic leukaemia cells through SP-1 dependent inactivation of TRIM59.
        J Cell Physiol. 2019; 234 (http://DOI:): 5186-5195