Advertisement

Evaluation of anti-angiogenic agent F16 for targeting glioblastoma xenograft tumors

  • Mohammad Algahtani
    Affiliations
    Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, Florida, United States

    Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
    Search for articles by this author
  • Umamaheswari Natarajan
    Affiliations
    Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, Florida, United States
    Search for articles by this author
  • Khalid Alhazzani
    Affiliations
    Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, Florida, United States

    Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
    Search for articles by this author
  • Ali Alaseem
    Affiliations
    Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, Florida, United States

    College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
    Search for articles by this author
  • Appu Rathinavelu
    Correspondence
    Corresponding author at: 3321, College Ave, Fort Lauderdale, Florida, 33314
    Affiliations
    Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, Florida, United States

    College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, United States
    Search for articles by this author

      Highlights

      • F16 treatment inhibits U87MG cell survival, migration, and invasion.
      • F16 exhibits potent anti-angiogenic and anti-tumor activities by selectively antagonizing Vascular Endothelial Growth Factor Receptor (VEGFR).
      • F16 is efficacious in delaying tumor growth in the subcutaneous xenograft model.

      Abstract

      Glioblastoma Multiforme (GBM) is one of the most aggressive and lethal types of all cancers, with an average 5-year survival rate of 5%. Since GBM tumors are highly vascularized tumors, and their growth is angiogenesis-dependent, antagonizing tumor angiogenesis by using angiogenesis inhibitors were considered as one of the promising approaches. In this context, intensive preclinical evaluation of a novel small molecule named F16 has exhibited potent anti-angiogenic and anti-tumor activities by selectively antagonizing Vascular Endothelial Growth Factor Receptor (VEGFR). Also, recent pharmacokinetic evaluation of F16 with tissue distribution analysis has shown that this molecule is transported across the blood-brain barrier (BBB) and accumulates in the brain regions with no signs of neurotoxicity. Therefore, further studies were conducted to determine the efficacy of F16 in delaying glioblastoma progression via inhibiting tumor angiogenesis. Our in vitro studies have clearly demonstrated the ability of F16 to inhibit migration and invasion of U87MG cells and also confirmed a potent cytotoxic effect against these cells in comparison to Temozolomide (TMZ). Our in vivo studies with the subcutaneously implanted (s.c.) xenograft tumor model and in vitro studies have clearly demonstrated the ability of F16 to delay tumor growth and inhibit migration and invasion.

      Graphical abstract

      Keywords

      Abbreviations:

      GBM (Glioblastoma Multiforme), TMZ (Temozolomide), BVZ (Bevacizumab), TBDE (Trypan Blue Dye Exclusion), VEGF (Vascular Endothelial Growth Factor), VEGFR (Vascular Endothelial Growth Factor Receptor), MMPs (Matrix Metalloproteinases)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kim WY
        • Lee HY
        Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic intervention in brain tumors.
        FEBS J. 2009; 276: 4653-4664https://doi.org/10.1111/j.1742-4658.2009.07177.x
      1. American Association of Neurological Surgeons 2021a. https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors

      2. American Association of Neurological Surgeons 2021b. https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme

        • Lamszus K
        • Kunkel P
        • Westphal M
        Invasion as limitation to anti-angiogenic glioma therapy.
        Acta Neurochir. 2003; 88: 169-177https://doi.org/10.1007/978-3-7091-6090-9_23
        • Plate KH
        • Mennel HD.
        Vascular morphology and angiogenesis in glial tumors.
        Exp Toxicol Pathol. 1995; 47: 89-94https://doi.org/10.1016/S0940-2993(11)80292-7
        • Bullitt MRE
        • Reardon DA
        • Smith JK.
        A review of micro- and macrovascular analyses in the assessment of tumor-associated vasculature as visualized.
        Neuroimage. 2007; 37: S116-S119https://doi.org/10.1016/j.neuroimage.2007.03.067
        • Hurwitz H
        • Fehrenbacher L
        • Novotny W
        • Cartwright T
        • Hainsworth J
        • Heim W
        • Berlin J
        • Baron A
        • Griffing S
        • Holmgren E
        • Ferrara N
        • Fyfe G.
        Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.
        N Engl J Med. 2004; 350: 2335-2342https://doi.org/10.1056/NEJMoa032691
        • Sandler A
        • Gray R
        • Perry MC
        • Brahmer J
        • Schiller JH
        • Dowlati A
        • Lilenbaum R
        • Johnson DH.
        Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.
        N Engl J Med. 2006; 355: 2542-2550https://doi.org/10.1056/NEJMoa061884
        • Miller K
        • Wang M
        • Gralow J
        • Dickler M
        • Cobleigh M
        • Perez EA
        • Shenkier T
        • Cella D
        • Davidson NE.
        Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer.
        N Engl J Med. 2007; 357: 2666-2676https://doi.org/10.1056/NEJMoa072113
        • Vincenzi B
        • Santini D
        • Rabitt C
        • Coppola R
        • Zobel BB
        • Trodella L
        • Tonini G.
        Cetuximab and irinotecan as third-line therapy in advanced colorectal cancer patients: a single centre phase II trial.
        Br J Cancer. 2006; 94: 792-797https://doi.org/10.1038/sj.bjc.6603018
        • Gerstner ER
        • Eichler AF
        • Plotkin SR
        • Drappatz J
        • Doyle CL
        • Xu L
        • Duda DG
        • Wen PY
        • Jain RK
        • Batchelor TT.
        Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide.
        J Neurooncol. 2011; 103: 325-332https://doi.org/10.1007/s11060-010-0390-7
        • Lakka SS
        • Rao JS.
        Antiangiogenic therapy in brain tumors.
        Expert Rev Neurother. 2008; 10: 1457-1473https://doi.org/10.1586/14737175.8.10.1457
        • Friedman HS
        • Prados MD
        • Wen PY
        • Mikkelsen T
        • Schiff D
        • Abrey LE
        • Yung WKA
        • Paleologos N
        • Nicholas MK
        • Jensen R
        • Vredenburgh J
        • Huang J
        • Zheng M
        • Cloughesy T.
        Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma.
        J Clin Oncol. 2009; 27: 4733-4740https://doi.org/10.1200/JCO.2008.19.8721
        • Kreisl TN
        • Kim Moore L
        • Duic P
        • Royce C
        • Garren ISN
        • Mackey M
        • Butman JA
        • Camphausen K
        • Park J
        • Albert PS
        • Fine H.A
        Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma.
        J Clin Oncol. 2009; 27: 740-745https://doi.org/10.1200/JCO.2008.16.3055
        • Nathanson D
        • Mischel P.S.
        Charting the course across the blood-brain barrier.
        J Clin Invest. 2011; 121: 31-33https://doi.org/10.1172/JCI45758
        • Yamamoto D
        • Tsubota SIY
        • Sueoka N
        • Kitamura YK
        • Odagiri H
        • Nagumo Y.
        Bevacizumab in the treatment of five patients with breast cancer and brain metastases: Japan Breast Cancer Research Network-07 trial.
        Onco Targets Ther. 2012; 5: 185-189https://doi.org/10.2147/OTT.S36515
        • Hyseni FK
        • Beijnen JH
        • Schellens JHM
        Bevacizumab.
        Oncologist. 2010; 15: 819-825https://doi.org/10.1634/theoncologist.2009-0317
        • Sridhar J
        • Akula N
        • Sivanesan D
        • Narasimhan M
        • Rathinavelu A
        • Pattabiramana N.
        Identification of novel angiogenesis inhibitors.
        Bioorganic & Medicinal Chemistry Letters. 2005; 15: 4125-4129https://doi.org/10.1016/j.bmcl.2005.06.001
        • Rathinavelu A
        • Alhazzani K
        • Dhandayuthapani S
        • Kanagasabai T.
        Anti-cancer effects of F16: A novel vascular endothelial growth factor receptor-specific inhibitor.
        Tumour Biol. 2017; 39https://doi.org/10.1177/1010428317726841
        • Natarajan U
        • Venkatesan T
        • Dhandayuthapani S
        • Dondapatti P
        • Rathinavelu A.
        Differential mechanisms involved in RG-7388 and Nutlin-3 induced cell death in SJSA-1 osteosarcoma cells.
        Cell Signal. 2020; 75109742https://doi.org/10.1016/j.cellsig.2020.109742
        • Natarajan U
        • Venkatesan Radhakrishnan V
        • Samuel S
        • Rasappan P
        • Rathinavelu A
        Differential mechanisms of cell death induced by HDAC inhibitor SAHA and MDM2 inhibitor RG7388 in MCF-7 Cells.
        Cells. 2019; 8: 8https://doi.org/10.3390/cells8010008
        • Rathinavelu A
        • Dhandayuthapani S
        • Kanagasabai T
        • Alhazzani K
        Anti-angiogenic and pro-apoptotic effects of a small-molecule JFD-WS in in-vitro and breast cancer xenograft mouse models.
        Oncol Rep. 2018; 39: 1711-1724https://doi.org/10.3892/or.2018.6256
        • Laemmli UK
        Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
        Nature. 1970; 2: 680-685https://doi.org/10.1038/227680a0
        • Jacobs VL
        • Valdes PA
        • Hickey WF
        • De Leo JA.
        Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model.
        ASN Neuro. 2011; 3: e00063https://doi.org/10.1042/AN20110014
        • Clark MJ
        • Homer ND
        • O'Connor B
        • Chen Z
        • Eskin A
        • Lee H
        • Merriman B
        • Nelson S.F
        U87MG decoded: the genomic sequence of a cytogenetically aberrant human cancer cell line.
        PLoS Genet. 2010; 29e1000832https://doi.org/10.1371/journal.pgen.1000832
        • Lee C.Y.
        Strategies of temozolomide in future glioblastoma treatment.
        Onco Targets Ther. 2017; 10: 265-270https://doi.org/10.2147/OTT.S120662
        • Stupp R
        • Mason WP
        • Bent MJV
        • Weller M
        • Fisher B
        • Taphoorn MJB
        • Belanger K
        • Brandes AA
        • Marosi C
        • Bogdahn U
        • Curschmann J
        • Janzer RC
        • Ludwin SK
        • Gorlia T
        • Allgeier A
        • Lacombe D
        • Cairncross JG
        • Eisenhauer E
        • Mirimanoff R.O.
        European organisation for research and treatment of cancer brain tumor and radiotherapy groups; national cancer institute of Canada CLINICAL TRIALS GROUP. RADIOTHERAPY plus concomitant and adjuvant temozolomide for glioblastoma.
        N Engl J Med. 2005; 352: 987-996https://doi.org/10.1056/NEJMoa043330
        • Neyns B
        • Tosoni A
        • Hwu WJ
        • Reardon D.A.
        Dose-dense temozolomide regimens: anti-tumor activity, toxicity, and immunomodulatory effects.
        Cancer. 2014; 116: 2868-2877https://doi.org/10.1002/cncr.25035
        • Housman G
        • Byler S
        • Heerboth S
        • Lapinska K
        • Longacre M
        • Snyder N
        • Sarkar S.
        Drug resistance in cancer: an overview.
        Cancers (Basel). 2014; 6: 1769-1792https://doi.org/10.3390/cancers6031769
        • Szabo E
        • Schneider H
        • Seystahl K
        • Rushing EJ
        • Herting F
        • Weidner KM
        • Weller M.
        Autocrine VEGFR1 and VEGFR2 signaling promotes survival in human glioblastoma models in vitro and in vivo.
        Neuro Oncol. 2016; 18: 1242-1252https://doi.org/10.1093/neuonc/now043
        • Lee SY.
        Temozolomide resistance in glioblastoma multiforme.
        Genes Dis. 2016; 3: 198-210https://doi.org/10.1016/j.gendis.2016.04.007
        • Lan F
        • Yang Y
        • Han J
        • Wu Q
        • Yu H
        • Yue X.
        Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-κB-dependent pathway downregulating MGMT expression.
        Int J Oncol. 2016; 48: 559-568https://doi.org/10.3892/ijo.2015.3271
        • Castro GN
        • Gutiérrez NC
        • Zoppino FCM
        • Fanelli MA
        • Carrión FDC
        • Sottile M
        • Nadin SB
        • Ciocca DR.
        Effects of temozolomide (TMZ) on the expression and interaction of heat shock proteins (HSPs) and DNA repair proteins in human malignant glioma cells.
        Cell Stress Chaperones. 2015; 20: 253-265https://doi.org/10.1007/s12192-014-0537-0
        • Baer JC
        • Freeman AA
        • Newlands ES
        • Watson AJ
        • Rafferty JA
        • Margison GP.
        Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumour cells.
        Br J Cancer. 1993; 67: 1299-1302https://doi.org/10.1038/bjc.1993.241
        • Borowicz S
        • Scoyk MV
        • Avasarala S
        • Rathinam MKK
        • Tauler J
        • Bikkavilli RK
        • Winn RA.
        The soft agar colony formation assay.
        J Vis Exp. 2014; 27: e51998https://doi.org/10.3791/51998
        • Abhinand CS
        • Raju R
        • Soumya SJ
        • Arya PS
        • Sudhakaran PR.
        VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis.
        J Cell Commun Signal. 2016; 10: 347-354https://doi.org/10.1007/s12079-016-0352-8
        • Wee KB
        • Aguda BD.
        Akt versus p53 in a network of oncogenes and tumor suppressor genes regulating cell survival and death.
        Biophys J. 2006; 91: 857-865https://doi.org/10.1529/biophysj.105.077693
        • Franke TF
        • Hornik CP
        • Segev L
        • Shostak GA
        • Sugimoto C.
        PI3K/Akt and apoptosis: size matters.
        Oncogene. 2003; 22: 8983-8998https://doi.org/10.1038/sj.onc.1207115
        • Gottlieb TM
        • Leal JFM
        • Seger R
        • Taya Y
        • Oren M.
        Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis.
        Oncogene. 2002; 21: 1299-1303https://doi.org/10.1038/sj.onc.120518.1
        • Nakada M
        • Okada Y
        • Yamashita J.
        The role of matrix metalloproteinases in glioma invasion.
        Front Biosci. 2003; 8: e261-e269https://doi.org/10.2741/1016
        • Bernhart E
        • Damm S
        • Wintersperger A
        • DeVaney T
        • Zimmer A
        • Raynham T
        • Ireson C
        • Sattler W.
        Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro.
        Exp Cell Res. 2013; 319: 2037-2048https://doi.org/10.1016/j.yexcr.2013.03.029
        • Hagemann C
        • Anacker J
        • Ernestus RI
        • Vince GH.
        A complete compilation of matrix metalloproteinase expression in human malignant gliomas.
        World J Clin Oncol. 2012; 3: 67-79https://doi.org/10.5306/wjco.v3.i5.67
        • Hagemann C
        • Anacker J
        • Haas S
        • Riesner D
        • Schömig B
        • Ernestus RI
        • Vince GH.
        Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures.
        BMC Res. 2010; 3https://doi.org/10.1186/1756-0500-3-293
        • Chen G
        • Yue Y
        • Qin J
        • Xiao X
        • Ren Q
        • Xiao B.
        Plumbagin suppresses the migration and invasion of glioma cells via downregulation of MMP-2/9 expression and inaction of PI3K/Akt signaling pathway in vitro.
        J Pharmacol Sci. 2014; 134: 59-67https://doi.org/10.1016/j.jphs.2017.04.003
        • Li C
        • Zhou Y
        • Peng X
        • Du L
        • Tian H
        • Yang G
        • Niu J
        • Wu W.
        Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells.
        PLoS One. 2014; 9: e90520https://doi.org/10.1371/journal.pone.0090520
        • Peng X
        • Zhou Y
        • Tian H
        • Yang G
        • Li C
        • Geng Y
        • Wu S
        • Wu W.
        Sulforaphane inhibits invasion by phosphorylating ERK1/2 to regulate E-cadherin and CD44v6 in human prostate cancer DU145 cells.
        Oncol Rep. 2015; 34: 1565-1572https://doi.org/10.3892/or.2015.4098
        • Marshall CJ.
        Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation.
        Cell. 1995; 80: 179-185https://doi.org/10.1016/0092-8674(95)90401-8
        • Burotto M
        • Chiou VL
        • Lee JM
        • Kohn EC.
        The MAPK pathway across different malignancies: a new perspective.
        Cancer. 2014; 120: 3446-3456https://doi.org/10.1002/cncr.28864
        • Simard XD
        • Kottakis F
        • Meloche S
        • Ferbeyre G.
        ERKs in cancer: friends or foes?.
        Cancer Res. 2014; 74: 412-419https://doi.org/10.1158/0008-5472.CAN-13-2381
        • Mebratu Y
        • Tesfaigzi Y.
        How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer?.
        Cell Cycle. 2009; 8: 1168-1175https://doi.org/10.4161/cc.8.8.8147
        • Yang TY
        • Chang GC
        • Chen KC
        • Hung HW
        • Hsu KH
        • Sheu GT
        • Hsu S.L.
        Sustained activation of ERK and Cdk2/cyclin-A signaling pathway by pemetrexed leading to S-phase arrest and apoptosis in human non-small cell lung cancer A549 cells.
        Eur J Pharmacol. 2011; 663: 17-26https://doi.org/10.1016/j.ejphar.2011.04.057