Advertisement

Identification of BRIP1, NSMCE2, ANAPC7, RAD18 and TTL from chromosome segregation gene set associated with hepatocellular carcinoma

  • Ceren Sucularli
    Correspondence
    Corresponding author at: Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
    Affiliations
    Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
    Search for articles by this author
Published:September 09, 2022DOI:https://doi.org/10.1016/j.cancergen.2022.09.003

      Highlights

      • Several gene sets related to chromosome segregation were enriched in LIHC.
      • BRIP1, NSMCE2, ANAPC7, RAD18, TTL were upregulated in LICH RNA-seq and HCC microarray.
      • High expression of five genes was correlated with poor prognosis in HCC.

      Abstract

      Introduction

      Hepatocellular carcinoma is one of the most frequent cancers with high mortality rate worldwide.

      Methods

      TCGA LIHC HTseq counts were analyzed. GSEA was performed with GO BP gene sets. GO analysis was performed with differentially expressed genes. The subset of genes contributing most of the enrichment result of GO_BP_CHROMOSOME_SEGREGATION of GSEA were identified. Five genes have been selected in this subset of genes for further analysis. A microarray data set, GSE112790, was analyzed as a validation data set. Survival analysis was performed.

      Results

      According to GSEA and GO analysis several gene sets and processes related to chromosome segregation were enriched in LIHC. GO_BP_CHROMOSOME_SEGREGATION gene set from GSEA had the highest size of the genes contributing most of the enrichment. Five genes in this gene set; BRIP1, NSMCE2, ANAPC7, RAD18 and TTL, whose expressions and prognostic values have not been studied in hepatocellular carcinoma in detail, have been selected for further analyses. Expression of these five genes were identified as significantly upregulated in LIHC RNA-seq and HCC microarray data set. Survival analysis showed that high expression of the five genes was associated with poor overall survival in HCC patients.

      Conclusion

      Selected genes were upregulated and had prognostic value in HCC.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sung H.
        • Ferlay J.
        • Siegel R.L.
        • Laversanne M.
        • Soerjomataram I.
        • Jemal A.
        • et al.
        Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA Cancer J Clin. 2021; 71 (Epub 2021/02/05PubMed PMID: 33538338): 209-249https://doi.org/10.3322/caac.21660
        • McGlynn K.A.
        • Petrick J.L.
        • El-Serag H.B.
        Epidemiology of hepatocellular carcinoma.
        Hepatology. 2021; 73 (SupplEpub 2020/04/23PubMed PMID: 32319693; PubMed Central PMCID: PMCPMC7577946): 4-13https://doi.org/10.1002/hep.31288
        • Varma D.
        • Salmon E.D.
        The KMN protein network–chief conductors of the kinetochore orchestra.
        J Cell Sci. 2012; 125 (PtEpub 2013/02/19PubMed PMID: 23418356; PubMed Central PMCID: PMCPMC3585512): 5927-5936https://doi.org/10.1242/jcs.093724
        • Tanaka K.
        • Hirota T.
        Chromosome segregation machinery and cancer.
        Cancer Sci. 2009; 100 (Epub 2009/05/13PubMed PMID: 19432891): 1158-1165https://doi.org/10.1111/j.1349-7006.2009.01178.x
        • Zhang W.
        • Mao J.H.
        • Zhu W.
        • Jain A.K.
        • Liu K.
        • Brown J.B.
        • et al.
        Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy.
        Nat Commun. 2016; 7 (Epub 2016/09/01PubMed PMID: 27577169; PubMed Central PMCID: PMCPMC5013662 PCT/US15/31413 entitled 'Centromere/Kinetochore protein genes for cancer diagnosis, prognosis and treatment selection'. The remaining authors declare no competing financial interests): 12619https://doi.org/10.1038/ncomms12619
        • Colaprico A.
        • Silva T.C.
        • Olsen C.
        • Garofano L.
        • Cava C.
        • Garolini D.
        • et al.
        TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
        Nucleic Acids Res. 2016; 44 (PubMed PMID: WOS:000376389000002)https://doi.org/10.1093/nar/gkv1507
        • Robinson M.D.
        • McCarthy D.J.
        • Smyth G.K.
        edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.
        Bioinformatics. 2010; 26 (PubMed PMID: WOS:000273116100025): 139-140https://doi.org/10.1093/bioinformatics/btp616
        • Ritchie M.E.
        • Phipson B.
        • Wu D.
        • Hu Y.
        • Law C.W.
        • Shi W.
        • et al.
        limma powers differential expression analyses for RNA-sequencing and microarray studies.
        Nucleic Acids Res. 2015; 43 (Epub 2015/01/22PubMed PMID: 25605792; PubMed Central PMCID: PMCPMC4402510): e47https://doi.org/10.1093/nar/gkv007
        • Merico D.
        • Isserlin R.
        • Stueker O.
        • Emili A.
        • Bader G.D.
        Enrichment map: a network-based method for gene-set enrichment visualization and interpretation.
        Plos One. 2010; 5 (PubMed PMID: WOS:000284231800014)https://doi.org/10.1371/journal.pone.0013984
        • Shannon P.
        • Markiel A.
        • Ozier O.
        • Baliga N.S.
        • Wang J.T.
        • Ramage D.
        • et al.
        Cytoscape: a software environment for integrated models of biomolecular interaction networks.
        Genome Res. 2003; 13 (PubMed PMID: WOS:000186357000016): 2498-2504https://doi.org/10.1101/gr.1239303
        • Wu T.
        • Hu E.
        • Xu S.
        • Chen M.
        • Guo P.
        • Dai Z.
        • et al.
        clusterProfiler 4.0: a universal enrichment tool for interpreting omics data.
        Innovation (N Y). 2021; 2 (Epub 2021/09/25PubMed PMID: 34557778; PubMed Central PMCID: PMCPMC8454663)100141https://doi.org/10.1016/j.xinn.2021.100141
        • Yu G.
        • Wang L.G.
        • Han Y.
        • He Q.Y.
        clusterProfiler: an R package for comparing biological themes among gene clusters.
        OMICS. 2012; 16 (Epub 2012/03/30PubMed PMID: 22455463; PubMed Central PMCID: PMCPMC3339379): 284-287https://doi.org/10.1089/omi.2011.0118
        • Bindea G.
        • Mlecnik B.
        • Hackl H.
        • Charoentong P.
        • Tosolini M.
        • Kirilovsky A.
        • et al.
        ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks.
        Bioinformatics. 2009; 25 (Epub 2009/02/25PubMed PMID: 19237447; PubMed Central PMCID: PMCPMC2666812): 1091-1093https://doi.org/10.1093/bioinformatics/btp101
        • Shimada S.
        • Mogushi K.
        • Akiyama Y.
        • Furuyama T.
        • Watanabe S.
        • Ogura T.
        • et al.
        Comprehensive molecular and immunological characterization of hepatocellular carcinoma.
        EBioMedicine. 2019; 40 (Epub 2019/01/02PubMed PMID: 30598371; PubMed Central PMCID: PMCPMC6412165): 457-470https://doi.org/10.1016/j.ebiom.2018.12.058
        • Edgar R.
        • Domrachev M.
        • Lash A.E.
        Gene expression omnibus: NCBI gene expression and hybridization array data repository.
        Nucleic Acids Res. 2002; 30 (Epub 2001/12/26PubMed PMID: 11752295; PubMed Central PMCID: PMCPMC99122): 207-210https://doi.org/10.1093/nar/30.1.207
        • Bolstad B.
        Quality assessment of affymetrix GeneChip data.
        in: Gentleman R. Carey V.J. Huber W. Irizarry R.A. Dudoit S. Bioinformatics and Computational Biology Solutions Using R and Bioconductor Statistics for Biology and Health. Springer, New York2005
        • Gautier L.
        • Cope L.
        • Bolstad B.M.
        Irizarry RA. affy–analysis of Affymetrix GeneChip data at the probe level.
        Bioinformatics. 2004; 20 (Epub 2004/02/13PubMed PMID: 14960456): 307-315https://doi.org/10.1093/bioinformatics/btg405
        • Nagy A.
        • Munkacsy G.
        • Gyorffy B.
        Pancancer survival analysis of cancer hallmark genes.
        Sci Rep. 2021; 11 (Epub 2021/03/17PubMed PMID: 33723286; PubMed Central PMCID: PMCPMC7961001): 6047https://doi.org/10.1038/s41598-021-84787-5
        • Menyhart O.
        • Nagy A.
        • Gyorffy B.
        Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma.
        Roy Soc Open Sci. 2018; 5 (PubMed PMID: WOS:000456566500013)https://doi.org/10.1098/rsos.81006
        • Lanczky A.
        • Gyorffy B.
        Web-based survival analysis tool tailored for medical research (KMplot): development and implementation.
        J Med Internet Res. 2021; 23 (Epub 2021/07/27PubMed PMID: 34309564; PubMed Central PMCID: PMCPMC8367126): e27633https://doi.org/10.2196/27633
        • Gu Y.
        • Li J.
        • Guo D.
        • Chen B.
        • Liu P.
        • Xiao Y.
        • et al.
        Identification of 13 key genes correlated with progression and prognosis in hepatocellular carcinoma by weighted gene Co-expression network analysis.
        Front Genet. 2020; 11 (Epub 2020/03/18PubMed PMID: 32180800; PubMed Central PMCID: PMCPMC7059753): 153https://doi.org/10.3389/fgene.2020.00153
        • Li Z.
        • Lin Y.
        • Cheng B.
        • Zhang Q.
        • Cai Y.
        Identification and analysis of potential key genes associated with hepatocellular carcinoma based on integrated bioinformatics methods.
        Front Genet. 2021; 12 (Epub 2021/03/27PubMed PMID: 33767726; PubMed Central PMCID: PMCPMC7985067)571231https://doi.org/10.3389/fgene.2021.571231
        • Yang H.
        • Zhang X.
        • Cai X.Y.
        • Wen D.Y.
        • Ye Z.H.
        • Liang L.
        • et al.
        From big data to diagnosis and prognosis: gene expression signatures in liver hepatocellular carcinoma.
        PeerJ. 2017; 5 (Epub 2017/03/21PubMed PMID: 28316892; PubMed Central PMCID: PMCPMC5354077): e3089https://doi.org/10.7717/peerj.3089
        • Wan Z.
        • Zhang X.
        • Luo Y.
        • Zhao B.
        Identification of hepatocellular carcinoma-related potential genes and pathways through bioinformatic-based analyses.
        Genet Test Mol Biomarkers. 2019; 23 (Epub 2019/10/22PubMed PMID: 31633428): 766-777https://doi.org/10.1089/gtmb.2019.0063
        • Liu Q.
        • Dai S.J.
        • Li H.
        • Dong L.
        • Peng Y.P.
        Silencing of NUF2 inhibits tumor growth and induces apoptosis in human hepatocellular carcinomas.
        Asian Pac J Cancer Prev. 2014; 15 (Epub 2014/11/07PubMed PMID: 25374179): 8623-8629https://doi.org/10.7314/apjcp.2014.15.20.8623
        • Song X.
        • Du R.
        • Gui H.
        • Zhou M.
        • Zhong W.
        • Mao C.
        • et al.
        Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis.
        Oncol Rep. 2020; 43 (Epub 2019/11/21PubMed PMID: 31746405; PubMed Central PMCID: PMCPMC6908929): 133-146https://doi.org/10.3892/or.2019.7400
        • Sucularli C.
        Computational assessment of SKA1 as a potential cancer biomarker.
        Turk J Biochem. 2019; 44: 752-760
        • Matsushita J.
        • Suzuki T.
        • Okamura K.
        • Ichihara G.
        • Nohara K.
        Identification by TCGA database search of five genes that are aberrantly expressed and involved in hepatocellular carcinoma potentially via DNA methylation changes.
        Environ Health Prev Med. 2020; 25 (Epub 2020/07/25PubMed PMID: 32703154; PubMed Central PMCID: PMCPMC7376645): 31https://doi.org/10.1186/s12199-020-00871-8
        • Deng M.
        • Li S.
        • Mei J.
        • Lin W.
        • Zou J.
        • Wei W.
        • et al.
        High SGO2 expression predicts poor overall survival: a potential therapeutic target for hepatocellular carcinoma.
        Genes (Basel). 2021; 12 (Epub 2021/07/03PubMed PMID: 34200261; PubMed Central PMCID: PMCPMC8226836)https://doi.org/10.3390/genes12060876
        • Xu D.
        • Wang Y.
        • Wu J.
        • Zhang Z.
        • Chen J.
        • Xie M.
        • et al.
        ECT2 overexpression promotes the polarization of tumor-associated macrophages in hepatocellular carcinoma via the ECT2/PLK1/PTEN pathway.
        Cell Death Dis. 2021; 12 (Epub 2021/02/10PubMed PMID: 33558466; PubMed Central PMCID: PMCPMC7870664): 162https://doi.org/10.1038/s41419-021-03450-z
        • Chen X.
        • Li W.
        • Xiao L.
        • Liu L.
        Nuclear division cycle 80 complex is associated with malignancy and predicts poor survival of hepatocellular carcinoma.
        Int J Clin Exp Pathol. 2019; 12 (Epub 2020/01/15PubMed PMID: 31933938; PubMed Central PMCID: PMCPMC6947052): 1233-1247
        • Yu D.C.
        • Chen X.Y.
        • Li X.
        • Zhou H.Y.
        • Yu D.Q.
        • Yu X.L.
        • et al.
        Transcript levels of spindle and kinetochore-associated complex 1/3 as prognostic biomarkers correlated with immune infiltrates in hepatocellular carcinoma.
        Sci Rep. 2021; 11 (Epub 2021/05/29PubMed PMID: 34045512; PubMed Central PMCID: PMCPMC8160131): 11165https://doi.org/10.1038/s41598-021-89628-z
        • Kang H.J.
        • Oh J.H.
        • Kim Y.W.
        • Kim W.
        • An J.
        • Sung C.O.
        • et al.
        Clinicopathological and molecular characterization of chromophobe hepatocellular carcinoma.
        Liver Int. 2021; 41 (Epub 2021/05/27PubMed PMID: 34036718): 2499-2510https://doi.org/10.1111/liv.14975
        • Hass H.G.
        • Vogel U.
        • Scheurlen M.
        • Jobst J.
        Subclassification and detection of new markers for the discrimination of primary liver tumors by gene expression analysis using oligonucleotide arrays.
        Gut Liver. 2018; 12 (Epub 2017/12/23PubMed PMID: 29271183; PubMed Central PMCID: PMCPMC5945262): 306-315https://doi.org/10.5009/gnl17277
        • Ohashi T.
        • Yamamoto T.
        • Yamanashi Y.
        • Ohsugi M.
        Human TUBG2 gene is expressed as two splice variant mRNA and involved in cell growth.
        FEBS Lett. 2016; 590 (Epub 2016/03/27PubMed PMID: 27015882): 1053-1063https://doi.org/10.1002/1873-3468.12163
        • Zhang Y.F.
        • Wang Y.X.
        • Zhang N.
        • Lin Z.H.
        • Wang L.R.
        • Feng Y.
        • et al.
        Prognostic alternative splicing regulatory network of RBM25 in hepatocellular carcinoma.
        Bioengineered. 2021; 12 (Epub 2021/04/09PubMed PMID: 33830865; PubMed Central PMCID: PMCPMC8806338): 1202-1211https://doi.org/10.1080/21655979.2021.1908812
        • Li C.
        • Zhang W.
        • Yang H.
        • Xiang J.
        • Wang X.
        • Wang J.
        Integrative analysis of dysregulated lncRNA-associated ceRNA network reveals potential lncRNA biomarkers for human hepatocellular carcinoma.
        PeerJ. 2020; 8 (Epub 2020/03/24PubMed PMID: 32201648; PubMed Central PMCID: PMCPMC7071826): e8758https://doi.org/10.7717/peerj.8758
        • Song Y.J.
        • Tan J.
        • Gao X.H.
        • Wang L.X.
        Integrated analysis reveals key genes with prognostic value in lung adenocarcinoma.
        Cancer Manag Res. 2018; 10 (Epub 2018/12/13PubMed PMID: 30538558; PubMed Central PMCID: PMCPMC6252781): 6097-6108https://doi.org/10.2147/CMAR.S168636
        • Sun B.
        • Lin G.
        • Ji D.
        • Li S.
        • Chi G.
        • Jin X.
        Dysfunction of sister chromatids separation promotes progression of hepatocellular carcinoma according to analysis of gene expression profiling.
        Front Physiol. 2018; 9 (Epub 2018/08/14PubMed PMID: 30100882; PubMed Central PMCID: PMCPMC6072861): 1019https://doi.org/10.3389/fphys.2018.01019
        • Zhuang L.
        • Yang Z.
        • Meng Z.
        Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients.
        Biomed Res Int. 2018; 2018 (Epub 2018/10/27PubMed PMID: 30363964; PubMed Central PMCID: PMCPMC6186344)7897346https://doi.org/10.1155/2018/7897346
        • Dai Y.
        • Tang Y.
        • He F.
        • Zhang Y.
        • Cheng A.
        • Gan R.
        • et al.
        Screening and functional analysis of differentially expressed genes in EBV-transformed lymphoblasts.
        Virol J. 2012; 9 (Epub 2012/03/31PubMed PMID: 22458412; PubMed Central PMCID: PMCPMC3433351): 77https://doi.org/10.1186/1743-422X-9-77
        • Subramanian A.
        • Tamayo P.
        • Mootha V.K.
        • Mukherjee S.
        • Ebert B.L.
        • Gillette M.A.
        • et al.
        Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
        Proc Natl Acad Sci U S A. 2005; 102 (Epub 2005/10/04PubMed PMID: 16199517; PubMed Central PMCID: PMCPMC1239896): 15545-15550https://doi.org/10.1073/pnas.0506580102
        • Liberzon A.
        • Subramanian A.
        • Pinchback R.
        • Thorvaldsdottir H.
        • Tamayo P.
        • Mesirov J.P.
        Molecular signatures database (MSigDB) 3.0.
        Bioinformatics. 2011; 27 (Epub 2011/05/07PubMed PMID: 21546393; PubMed Central PMCID: PMCPMC3106198): 1739-1740https://doi.org/10.1093/bioinformatics/btr260
        • Pan D.
        • Walstein K.
        • Take A.
        • Bier D.
        • Kaiser N.
        • Musacchio A.
        Mechanism of centromere recruitment of the CENP-A chaperone HJURP and its implications for centromere licensing.
        Nat Commun. 2019; 10 (Epub 2019/09/08PubMed PMID: 31492860; PubMed Central PMCID: PMCPMC6731319): 4046https://doi.org/10.1038/s41467-019-12019-6
        • McKinley K.L.
        • Cheeseman I.M.
        Polo-like kinase 1 licenses CENP-A deposition at centromeres.
        Cell. 2014; 158 (Epub 2014/07/19PubMed PMID: 25036634; PubMed Central PMCID: PMCPMC4192726): 397-411https://doi.org/10.1016/j.cell.2014.06.016
        • Nagpal H.
        • Fukagawa T.
        Kinetochore assembly and function through the cell cycle.
        Chromosoma. 2016; 125 (Epub 2016/07/05PubMed PMID: 27376724): 645-659https://doi.org/10.1007/s00412-016-0608-3
        • Li J.
        • Gao J.Z.
        • Du J.L.
        • Huang Z.X.
        • Wei L.X.
        Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma.
        Int J Oncol. 2014; 45 (Epub 2014/07/30PubMed PMID: 25069850): 1547-1555https://doi.org/10.3892/ijo.2014.2559
        • Ricke R.M.
        • Jeganathan K.B.
        • van Deursen J.M.
        Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation.
        J Cell Biol. 2011; 193 (Epub 2011/06/08PubMed PMID: 21646403; PubMed Central PMCID: PMCPMC3115799): 1049-1064https://doi.org/10.1083/jcb.201012035
        • Sotillo R.
        • Hernando E.
        • Diaz-Rodriguez E.
        • Teruya-Feldstein J.
        • Cordon-Cardo C.
        • Lowe S.W.
        • et al.
        Mad2 overexpression promotes aneuploidy and tumorigenesis in mice.
        Cancer Cell. 2007; 11 (Epub 2006/12/27PubMed PMID: 17189715; PubMed Central PMCID: PMCPMC1850996): 9-23https://doi.org/10.1016/j.ccr.2006.10.019
        • Nath S.
        • Somyajit K.
        • Mishra A.
        • Scully R.
        • Nagaraju G.
        FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids.
        Nucleic Acids Res. 2017; 45 (Epub 2017/09/16PubMed PMID: 28911102; PubMed Central PMCID: PMCPMC5587752): 8886-8900https://doi.org/10.1093/nar/gkx586
        • Oussalah A.
        • Avogbe P.H.
        • Guyot E.
        • Chery C.
        • Gueant-Rodriguez R.M.
        • Ganne-Carrie N.
        • et al.
        BRIP1 coding variants are associated with a high risk of hepatocellular carcinoma occurrence in patients with HCV- or HBV-related liver disease.
        Oncotarget. 2017; 8 (Epub 2016/08/17PubMed PMID: 28968953; PubMed Central PMCID: PMCPMC5609885): 62842-62857https://doi.org/10.18632/oncotarget.11327
        • Seal S.
        • Thompson D.
        • Renwick A.
        • Elliott A.
        • Kelly P.
        • Barfoot R.
        • et al.
        Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles.
        Nat Genet. 2006; 38 (Epub 2006/10/13PubMed PMID: 17033622): 1239-1241https://doi.org/10.1038/ng1902
        • Rafnar T.
        • Gudbjartsson D.F.
        • Sulem P.
        • Jonasdottir A.
        • Sigurdsson A.
        • Jonasdottir A.
        • et al.
        Mutations in BRIP1 confer high risk of ovarian cancer.
        Nat Genet. 2011; 43 (Epub 2011/10/04PubMed PMID: 21964575): 1104-1107https://doi.org/10.1038/ng.955
        • Gupta I.
        • Ouhtit A.
        • Al-Ajmi A.
        • Rizvi S.G.A.
        • Al-Riyami H.
        • Al-Riyami M.
        • et al.
        BRIP1 overexpression is correlated with clinical features and survival outcome of luminal breast cancer subtypes.
        Endocr Connect. 2018; 7 (Epub 2017/11/16PubMed PMID: 29138235; PubMed Central PMCID: PMCPMC5744628): 65-77https://doi.org/10.1530/EC-17-0173
        • Nakanishi R.
        • Kitao H.
        • Fujinaka Y.
        • Yamashita N.
        • Iimori M.
        • Tokunaga E.
        • et al.
        FANCJ expression predicts the response to 5-fluorouracil-based chemotherapy in MLH1-proficient colorectal cancer.
        Ann Surg Oncol. 2012; 19 (Epub 2012/04/25PubMed PMID: 22526901): 3627-3635https://doi.org/10.1245/s10434-012-2349-8
        • Khan U.
        • Khan M.S.
        Prognostic value estimation of BRIP1 in breast cancer by exploiting transcriptomics data through bioinformatics approaches.
        Bioinform Biol Insights. 2021; 15 (Epub 2021/11/30PubMed PMID: 34840500; PubMed Central PMCID: PMCPMC8619737)11779322211055892https://doi.org/10.1177/11779322211055892
        • Fridlyand J.
        • Snijders A.M.
        • Ylstra B.
        • Li H.
        • Olshen A.
        • Segraves R.
        • et al.
        Breast tumor copy number aberration phenotypes and genomic instability.
        BMC Cancer. 2006; 6 (Epub 2006/04/20PubMed PMID: 16620391; PubMed Central PMCID: PMCPMC1459181): 96https://doi.org/10.1186/1471-2407-6-96
        • Eelen G.
        • Vanden Bempt I.
        • Verlinden L.
        • Drijkoningen M.
        • Smeets A.
        • Neven P.
        • et al.
        Expression of the BRCA1-interacting protein Brip1/BACH1/FANCJ is driven by E2F and correlates with human breast cancer malignancy.
        Oncogene. 2008; 27 (Epub 2008/03/18PubMed PMID: 18345034): 4233-4241https://doi.org/10.1038/onc.2008.51
        • Oravcova M.
        • Boddy M.N.
        Recruitment, loading, and activation of the Smc5-Smc6 SUMO ligase.
        Curr Genet. 2019; 65 (Epub 2019/01/03PubMed PMID: 30600397; PubMed Central PMCID: PMCPMC6511331): 669-676https://doi.org/10.1007/s00294-018-0922-9
        • Torres-Rosell J.
        • Machin F.
        • Farmer S.
        • Jarmuz A.
        • Eydmann T.
        • Dalgaard J.Z.
        • et al.
        SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions.
        Nat Cell Biol. 2005; 7 (Epub 2005/03/29PubMed PMID: 15793567): 412-419https://doi.org/10.1038/ncb1239
        • Jacome A.
        • Gutierrez-Martinez P.
        • Schiavoni F.
        • Tenaglia E.
        • Martinez P.
        • Rodriguez-Acebes S.
        • et al.
        NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity.
        EMBO J. 2015; 34 (Epub 2015/10/08PubMed PMID: 26443207; PubMed Central PMCID: PMCPMC4641528): 2604-2619https://doi.org/10.15252/embj.201591829
        • Huang Y.
        • Pan J.
        • Chen D.
        • Zheng J.
        • Qiu F.
        • Li F.
        • et al.
        Identification and functional analysis of differentially expressed genes in poorly differentiated hepatocellular carcinoma using RNA-seq.
        Oncotarget. 2017; 8 (Epub 2017/04/19PubMed PMID: 28415592; PubMed Central PMCID: PMCPMC5482631): 35973-35983https://doi.org/10.18632/oncotarget.16415
        • Armendariz-Castillo I.
        • Hidalgo-Fernandez K.
        • Perez-Villa A.
        • Garcia-Cardenas J.M.
        • Lopez-Cortes A.
        • Guerrero S.
        Identification of key proteins from the alternative lengthening of telomeres-associated promyelocytic leukemia nuclear bodies pathway.
        Biology (Basel). 2022; 11 (Epub 2022/02/26PubMed PMID: 35205052; PubMed Central PMCID: PMCPMC8868596)https://doi.org/10.3390/biology11020185
        • Wild T.
        • Budzowska M.
        • Hellmuth S.
        • Eibes S.
        • Karemore G.
        • Barisic M.
        • et al.
        Deletion of APC7 or APC16 allows proliferation of human cells without the spindle assembly checkpoint.
        Cell Rep. 2018; 25 (e5Epub 2018/11/30PubMed PMID: 30485802; PubMed Central PMCID: PMCPMC6289045): 2317-2328https://doi.org/10.1016/j.celrep.2018.10.104
        • Kang Y.
        • Kim J.H.
        • Lee T.H.
        • Kim T.S.
        • Jung W.H.
        • Chung H.C.
        • et al.
        Expression of anaphase-promoting complex7 in fibroadenomas and phyllodes tumors of breast.
        Hum Pathol. 2009; 40 (Epub 2008/09/16PubMed PMID: 18789487): 98-107https://doi.org/10.1016/j.humpath.2008.04.023
        • Park K.H.
        • Choi S.E.
        • Eom M.
        • Kang Y.
        Downregulation of the anaphase-promoting complex (APC)7 in invasive ductal carcinomas of the breast and its clinicopathologic relationships.
        Breast Cancer Res. 2005; 7 (Epub 2005/03/04PubMed PMID: 15743504; PubMed Central PMCID: PMCPMC1064132): R238-R247https://doi.org/10.1186/bcr978
        • Verkade H.M.
        • Bugg S.J.
        • Lindsay H.D.
        • Carr A.M.
        • O'Connell M.J.
        Rad18 is required for DNA repair and checkpoint responses in fission yeast.
        Mol Biol Cell. 1999; 10 (Epub 1999/09/03PubMed PMID: 10473635; PubMed Central PMCID: PMCPMC25529): 2905-2918https://doi.org/10.1091/mbc.10.9.2905
        • Li P.
        • He C.
        • Gao A.
        • Yan X.
        • Xia X.
        • Zhou J.
        • et al.
        RAD18 promotes colorectal cancer metastasis by activating the epithelialmesenchymal transition pathway.
        Oncol Rep. 2020; 44 (Epub 2020/04/23PubMed PMID: 32319669; PubMed Central PMCID: PMCPMC7251712): 213-223https://doi.org/10.3892/or.2020.7590
        • Zou S.
        • Yang J.
        • Guo J.
        • Su Y.
        • He C.
        • Wu J.
        • et al.
        RAD18 promotes the migration and invasion of esophageal squamous cell cancer via the JNK-MMPs pathway.
        Cancer Lett. 2018; 417 (Epub 2018/01/07PubMed PMID: 29306013): 65-74https://doi.org/10.1016/j.canlet.2017.12.034
        • Baatar S.
        • Bai T.
        • Yokobori T.
        • Gombodorj N.
        • Nakazawa N.
        • Ubukata Y.
        • et al.
        High RAD18 expression is associated with disease progression and poor prognosis in patients with gastric cancer.
        Ann Surg Oncol. 2020; 27 (Epub 2020/05/02PubMed PMID: 32356270): 4360-4368https://doi.org/10.1245/s10434-020-08518-2
        • Erck C.
        • MacLeod R.A.
        • Wehland J.
        Cloning and genomic organization of the TTL gene on mouse chromosome 2 and human chromosome 2q13.
        Cytogenet Genome Res. 2003; 101 (Epub 2003/10/23PubMed PMID: 14571137): 47-53https://doi.org/10.1159/000073418
        • Ersfeld K.
        • Wehland J.
        • Plessmann U.
        • Dodemont H.
        • Gerke V.
        • Weber K.
        Characterization of the tubulin-tyrosine ligase.
        J Cell Biol. 1993; 120 (Epub 1993/02/01PubMed PMID: 8093886; PubMed Central PMCID: PMCPMC2119537): 725-732https://doi.org/10.1083/jcb.120.3.725
        • Lafanechere L.
        • Courtay-Cahen C.
        • Kawakami T.
        • Jacrot M.
        • Rudiger M.
        • Wehland J.
        • et al.
        Suppression of tubulin tyrosine ligase during tumor growth.
        J Cell Sci. 1998; 111 (PtEpub 1998/03/21PubMed PMID: 9405300): 171-181
        • Mialhe A.
        • Lafanechere L.
        • Treilleux I.
        • Peloux N.
        • Dumontet C.
        • Bremond A.
        • et al.
        Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis.
        Cancer Res. 2001; 61 (Epub 2001/06/30PubMed PMID: 11431336): 5024-5027
        • Kato C.
        • Miyazaki K.
        • Nakagawa A.
        • Ohira M.
        • Nakamura Y.
        • Ozaki T.
        • et al.
        Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis.
        Int J Cancer. 2004; 112 (Epub 2004/09/24PubMed PMID: 15382060): 365-375https://doi.org/10.1002/ijc.20431