Dynamics of cell-free DNA in predicting response in adult diffuse glioma on chemoradiotherapy

Published:September 18, 2022DOI:


      • Adult diffuse glioma is a heterogeneous brain tumor with a variable prognosis and treatment response.
      • Cell-free DNA (cfDNA) may help to meet challenges in the management of inoperable and recurrent ADG.
      • cfDNA levels are associated with clinical outcomes and independent prognostic factors
      • Targeted NGS in pre-operative cfDNA matches the results of IHC analysis with high concordance,
      • Mutational analysis in cfDNA samples might be a surrogate for tissue



      Adult diffuse glioma (ADG) is a heterogeneous primary brain tumor with a variable prognosis and treatment response. Tissue biomarkers and molecular genetic profiling form an integral part of diagnosis and prognostication. However, obtaining tissue in inoperable locations and diagnosis of recurrence can be an issue. Cell-free DNA (cfDNA) may help to meet these challenges in the management of ADG.


      The study aimed to serially quantify cfDNA in ADG on chemoradiation and to correlate mutational profiling of the cfDNA with biopsy.

      Material and Methods

      The study group comprised of histopathological confirmed ADG (n = 50), including grade II, III and IV glioma, and controls (n = 25). Serum cfDNA was extracted using ChargeSwitch gDNA 1 mL Serum Kit (Invitrogen, USA) and quantified using SYBR based quantitative polymerase chain reaction (qPCR). Next-generation sequencing (NGS) was performed in 07 pre-operative and 05 post-operative cfDNA and tumor biopsy DNA on an Ion personal genome machine (IonPGM) with an in-house designed NGS panel (including TP53, ATRX, and IDH1 and IDH2).


      In patients with ADG, the pre-radiotherapy cfDNA level was significantly higher (Median; 113.46 ng/mL) than normal controls (Median; 74.37 ng/mL), (p = 0.048). Non-responders had significantly higher cfDNA levels (Median; 184.4 ng/mL), than responders (Median; 68.12 ng/mL), (p = 0.023). TP53 gene mutation was most common in both pre-operative and post-operative cfDNA samples.


      Pre-radiotherapy cfDNA levels are associated with clinical outcomes independent of other prognostic factors. Targeted NGS in pre-operative cfDNA matches the results of IHC analysis with high concordance, and it may be helpful in inoperable cases or ADG recurrence.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Grant R.
        • Liang B.C.
        • Slattery J.
        • Greenberg H.S.
        • Junck L.
        Chemotherapy response criteria in malignant glioma.
        Neurology. 1997; 48: 1336-1340
        • Ahmed R.
        • Oborski M.J.
        • Hwang M.
        • Lieberman F.S.
        • Mountz J.M.
        Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods.
        Cancer Manag Res. 2014; 6: 149-170
        • Bagley S.J.
        • Till J.
        • Abdalla A.
        • Sangha H.K.
        • Yee S.S.
        • Freedman J.
        • et al.
        Association of plasma cell-free DNA with survival in patients with IDH wild-type glioblastoma.
        Neuro-Oncol Adv. 2021; 3: 1-11
        • Rennert H.
        • Eng K.
        • Zhang T.
        • Tan A.
        • Xiang J.
        • Romanel A.
        • et al.
        Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care.
        Npj Genomic Med. 2016; 1: 1-11
        • Fontanilles M.
        • Duran-Peña A.
        • Idbaih A.
        Liquid biopsy in primary brain tumors: looking for stardust!.
        Curr Neurol Neurosci Rep. 2018; 18
        • Torres S.
        • Á González
        • Cunquero Tomas A.J.
        • Calabuig Fariñas S.
        • Ferrero M.
        • Mirda D.
        • et al.
        A profile on cobas® EGFR Mutation Test v2 as companion diagnostic for first-line treatment of patients with non-small cell lung cancer.
        Expert Rev Mol Diagn [Internet]. 2020 Jun 1; 20 ([cited 2021 Sep 7]Available from:): 575-582
        • Nikiforova M.N.
        • Wald A.I.
        • Melan M.A.
        • Roy S.
        • Zhong S.
        • Hamilton R.L.
        • et al.
        Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors.
        Neuro-Oncol. 2016; 18: 379-387
        • Brat D.J.
        • Cagle P.T.
        • Dillon D.A.
        • Hattab E.M.
        • McLendon R.E.
        • Miller M.A.
        • et al.
        Template for reporting results of biomarker testing of specimens from patients with tumors of the central nervous system.
        Arch Pathol Lab Med. 2015; 139: 1087-1093
        • Liu A.
        • Hou C.
        • Chen H.
        • Zong X.
        • Zong P.
        Genetics and epigenetics of glioblastoma: applications and overall incidence of IDH1 mutation.
        Front Oncol. 2016; 6: 1-9
        • Dubois L.G.
        • Campanati L.
        • Righy C.
        • D'Andrea-Meira I.
        • Spohr TCL de S.E.
        • Porto-Carreiro I.
        • et al.
        Gliomas and the vascular fragility of the blood brain barrier.
        Front Cell Neurosci. 2014; 8: 418
        • Abbosh C.
        • Birkbak N.J.
        • Wilson G.A.
        • Jamal-Hanjani M.
        • Constantin T.
        • Salari R.
        • et al.
        Phylogenetic ctDNA analysis depicts early stage lung cancer evolution.
        Nature. 2017 Apr 26; 545: 446-451
        • Ballester L.Y.
        • Fuller G.N.
        • Powell S.Z.
        • Sulman E.P.
        • Patel K.P.
        • Luthra R.
        • et al.
        Retrospective analysis of molecular and immunohistochemical characterization of 381 primary brain tumors.
        J Neuropathol Exp Neurol. 2017; 76: 179-188
        • Martínez-Ricarte F.
        • Mayor R.
        • Martínez-Sáez E.
        • Rubio-Pérez C.
        • Pineda E.
        • Cordero E.
        • et al.
        Molecular diagnosis of diffuse gliomas through sequencing of cell-free circulating tumor DNA from cerebrospinal fluid.
        Clin Cancer Res. 2018; 24: 2812-2819
        • Kang S.
        • Li Q.
        • Chen Q.
        • Zhou Y.
        • Park S.
        • Lee G.
        • et al.
        CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA.
        Genome Biol. 2017; 18: 1-12
        • Kang Y.
        • Lin X.
        • Kang D.
        Diagnostic value of circulating tumor DNA in molecular characterization of glioma: a meta-analysis.
        Medicine (Baltimore). 2020; 99: e21196
        • Boisselier B.
        • Pérez-Larraya J.G.
        • Rossetto M.
        • Labussière M.
        • Ciccarino P.
        • Marie Y.
        • et al.
        Detection of IDH1 mutation in the plasma of patients with glioma.
        Neurology. 2012; 79: 1693-1698
        • Lavon I.
        • Refael M.
        • Zelikovitch B.
        • Shalom E.
        • Siegal T
        Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades.
        Neuro-Oncol. 2010; 12: 173-180
        • Stupp R.
        • Weller M.
        • Belanger K.
        • Bogdahn U.
        • Ludwin S.K.
        • Lacombe D.
        • et al.
        Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
        N Engl J Med. 2005; 10
        • Wen P.Y.
        • Macdonald D.R.
        • Reardon D.A.
        • Cloughesy T.F.
        • Sorensen A.G.
        • Galanis E.
        • et al.
        Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group.
        J Clin Oncol. 2010; 28: 1963-1972
        • Ostrom Q.T.
        • Cioffi G.
        • Gittleman H.
        • Patil N.
        • Waite K.
        • Kruchko C.
        • et al.
        CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016.
        Neuro-Oncol. 2019; 21: V1-100
        • De Mattos-Arruda L.
        • Mayor R.
        • Ng C.K.Y.
        • Weigelt B.
        • Martínez-Ricarte F.
        • Torrejon D.
        • et al.
        Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma.
        Nat Commun [Internet]. 2015; 6 ([cited 2021 Jul 9]Available from:): 8839
        • Wang Y.
        • Springer S.
        • Zhang M.
        • McMahon K.W.
        • Kinde I.
        • Dobbyn L.
        • et al.
        Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord.
        Proc Natl Acad Sci [Internet]. 2015; 112 ([cited 2021 Aug 4]Available from:): 9704-9709
        • Bagley S.J.
        • Ali Nabavizadeh S.
        • Mays J.J.
        • Till J.E.
        • Ware J.B.
        • Levy S.
        • et al.
        Clinical utility of plasma cell-free DNA in adult patients with newly diagnosed glioblastoma: a pilot prospective study.
        Clin Cancer Res. 2020; 26: 397-407
        • Nabavizadeh S.A.
        • Ware J.B.
        • Guiry S.
        • Nasrallah M.P.
        • Mays J.J.
        • Till J.E.
        • et al.
        Imaging and histopathologic correlates of plasma cell-free DNA concentration and circulating tumor DNA in adult patients with newly diagnosed glioblastoma.
        Neuro-Oncol Adv. 2020; 2: 1-9
        • Nørøxe D.S.
        • Østrup O.
        • Yde C.W.
        • Ahlborn L.B.
        • Nielsen F.C.
        • Michaelsen S.R.
        • et al.
        Cell-free DNA in newly diagnosed patients with glioblastoma – a clinical prospective feasibility study.
        Oncotarget. 2019; 10: 4397-4406
        • Ellingson B.M.
        • Wen P.Y.
        • Cloughesy T.F.
        Modified criteria for radiographic response assessment in glioblastoma clinical trials.
        Neurotherapeutics. 2017; 14: 307-320
        • Dawson S.J.
        • Tsui D.W.Y.
        • Murtaza M.
        • Biggs H.
        • Rueda O.M.
        • Chin S.F.
        • et al.
        Analysis of circulating tumor DNA to monitor metastatic breast cancer.
        N Engl J Med. 2013 Mar 28; 368: 1199-1209
        • Verma T.
        • Kumari S.
        • Mishra S.
        • Rastogi M.
        • Tiwari V.
        • Agarwal G.
        • et al.
        Circulating free DNA as a marker of response to chemoradiation in locally advanced head and neck squamous cell carcinoma.
        Indian J Pathol Microbiol. 2020; 63: 521-526
        • Murtaza M.
        • Dawson S.J.
        • Tsui D.W.Y.
        • Gale D.
        • Forshew T.
        • Piskorz A.M.
        • et al.
        Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA.
        Nature. 2013 May 2; 497: 108-112
        • Lebofsky R.
        • Decraene C.
        • Bernard V.
        • Kamal M.
        • Blin A.
        • Leroy Q.
        • et al.
        Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types.
        Mol Oncol [Internet]. 2015 Apr 1; 9 ([cited 2021 Aug 4]Available from:): 783-790
        • Bennett C.W.
        • Berchem G.
        • Kim Y.J.
        El-Khoury V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer.
        Oncotarget. 2016; 7: 71013-71035
        • Fontanilles M.
        • Marguet F.
        • Beaussire L.
        • Magne N.
        • Pépin L.F.
        • Alexandru C.
        • et al.
        Cell-free DNA and circulating TERT promoter mutation for disease monitoring in newly-diagnosed glioblastoma.
        Acta Neuropathol Commun [Internet]. 2020; 8 ([cited 2021 Oct 5]Available from:): 1-10
        • Bagley S.J.
        • Nabavizadeh S.A.
        • Mays J.J.
        • Till J.E.
        • Ware J.B.
        • Levy S.
        • et al.
        Clinical utility of plasma cell-free DNA in adult patients with newly diagnosed glioblastoma: a pilot prospective study.
        Clin Cancer Res [Internet]. 2020; 26 ([cited 2021 Jul 9]Available from:): 397-407
        • Piccioni D.E.
        • Achrol A.S.
        • Kiedrowski L.A.
        • Banks K.C.
        • Boucher N.
        • Barkhoudarian G.
        • et al.
        Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors.
        CNS Oncol [Internet]. 2019; 8 ([cited 2021 Jul 9]CNS34. Available from:)
        • El Messaoudi S.
        • Rolet F.
        • Mouliere F.
        • Thierry A.R.
        Circulating cell free DNA: preanalytical considerations.
        Clin Chim Acta Int J Clin Chem. 2013; 424: 222-230
        • Rachiglio A.M.
        • Abate R.E.
        • Sacco A.
        • Pasquale R.
        • Fenizia F.
        • Lambiase M.
        • et al.
        Limits and potential of targeted sequencing analysis of liquid biopsy in patients with lung and colon carcinoma.
        Oncotarget [Internet]. 2016; 7 ([cited 2021 Aug 4]Available from:): 66595-66605
        • Aggarwal C.
        • Thompson J.C.
        • Black T.A.
        • Katz S.I.
        • Fan R.
        • Yee S.S.
        • et al.
        Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer.
        JAMA Oncol. 2019; 5: 173-180
        • Thompson J.C.
        • Yee S.S.
        • Troxel A.B.
        • Savitch S.L.
        • Fan R.
        • Balli D.
        • et al.
        Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA.
        Clin Cancer Res Off J Am Assoc Cancer Res. 2016; 22: 5772-5782