Advertisement

Comprehensive analysis of PLKs expression and prognosis in breast cancer

  • Wang Jiawei
    Affiliations
    Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China

    HuBei University of Science and Technology of Medicine, Xianning Medical College, Xianning 437000, China
    Search for articles by this author
  • Bao Xiajun
    Affiliations
    Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China

    HuBei University of Science and Technology of Medicine, Xianning Medical College, Xianning 437000, China
    Search for articles by this author
  • Sun Tian
    Affiliations
    Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China

    HuBei University of Science and Technology of Medicine, Xianning Medical College, Xianning 437000, China
    Search for articles by this author
  • Gao Xuzheng
    Affiliations
    HuBei University of Science and Technology of Medicine, Xianning Medical College, Xianning 437000, China
    Search for articles by this author
  • Zhang Zhenwang
    Correspondence
    Corresponding author.
    Affiliations
    Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China

    HuBei University of Science and Technology of Medicine, Xianning Medical College, Xianning 437000, China
    Search for articles by this author
Published:September 26, 2022DOI:https://doi.org/10.1016/j.cancergen.2022.09.007

      Highlights

      • PLKs plays an important role in the regulation of mitosis and meiosis in the cell cycle, so the exact expression pattern and prognosis of the five subtypes of PLK are clearly analyzed.
      • The expression of PLKs in breast cancer tissues was analyzed by Oncomine database, GEPIA database, Kaplan-Meier mapper and cBioPortal database system for the first time.
      • In the Kaplan-Meier Plotter database, high levels of PLK1 and PLK4 transcripts were observed to be associated with low relapse-free survival in all breast cancer patients. On the other hand, high levels of PLK2, PLK3, and PLK5 were associated with higher relapse-free survival.
      • PLK1 and PLK4 are potential targets for breast cancer patients to receive precision therapy, and PLK2, PLK3 and PLK5 have been proposed as new biomarkers for the prognosis of breast cancer.

      Abstract

      Objective

      A thorough examination of PLKs in breast cancer, including their expression and prognosis.

      Methods

      With the help of the Oncomine database, the transcript levels of PLKs in breast cancer were examined. The changes in PLKs expression with tumor stage and indeed the relationship between PLKs expression and stage of cancer in women with breast cancer were scrutinized by using the GEPIA database. Based on Kaplan-Meier plots, breast cancer patients were assessed for their prognosis. Breast cancer gene expression and mutations were analyzed within the cBioPortal database.

      Results

      According to Oncomine data, PLK1 and PLK4 mRNA expression levels were dramatically elevated in breast cancer patients while PLK2 and PLK5P levels were significantly downregulated. PLK1 and PLK4 expression were discovered to be greater in breast cancer tissues than in healthy tissues following analysis of the GEPIA database (P < 0.05). High levels of PLK1 and PLK4 transcripts have been linked to poor relapse-free survival rates across all patients with breast cancer according to the Kaplan-Meier Plotter database. The high levels of PLK2, PLK3, and PLK5 were associated with a higher recurrence-free survival rate. In the cBioPortal database, PLK was altered in 9.6% of breast cancer samples. Genetic alterations occurred in 15.07% of clinically counted invasive breast cancers, with mutations in 4.11%, gene amplifications in 9.59%, and gene deletion mutations in 1.37%. Additionally, the KEGG database demonstrates that PLKs are crucial for the cell cycle. The findings imply that elevated PLK1 and PLK4 expression in tissues of breast cancer might contribute significantly to the carcinogenesis of breast cancer. Moreover, PLK1 and PLK4 are highly expressed in breast cancer, and their use as molecular markers to identify high-risk subsets from patients with breast cancer is potentially possible.

      Conclusions

      For the precise therapy of breast cancers, PLK1 and PLK4 are potential targets, while PLK2, PLK3, and PLK5 are brand-new biomarkers for predicting the prognosis of breast cancer.

      Keywords

      Abbreviations:

      PLK (Polo-likekinase), SKA3 (Spindle and kinetochore-associated complex subunit 3), GBM (Glioblastoma), RCC (Renal cell carcinoma), NSCLC (Non-small cell lung cancer), SCCO (Small cell carcinoma of the ovary), TCGA (The Cancer Genome Atlas), HRs (Hazard ratios), CIs (Confidence intervals), GISTIC (GenomicIdentificationofSignificant Targets in Cancer), CNA (Copy number changes), GEPIA (The Gene Expression Profiling Interactive Analysis), CIN (Chromosomal instability), OS (Overall survival), PPS (Post-progression survival), RFS (Survival after surgical treatment), CRC (Colorectal cancer), AML (Acute myelogenous leukemia)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barr F.A.
        • Sillje H.H.
        • Nigg E.A.
        Polo-like kinases and the orchestration of cell division.
        Nat Rev Mol Cell Biol. 2004; 5: 429-440
        • Schoffski P.
        Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology.
        Oncologist. 2009; 14: 559-570
        • Xie Y.
        • Zhang W.
        • Guo L.
        • Kril L.M.
        • Begley K.L.
        • Sviripa V.M.
        • Chen X.
        • Liu X.
        • Lee E.Y.
        • He D.
        • et al.
        Potent synergistic effect on C-Myc-driven colorectal cancers using a novel indole-substituted quinoline with a Plk1 inhibitor.
        Mol Cancer Ther. 2021; 20: 1893-1903
        • Yang G.
        • Sheng B.
        • Li R.
        • Xu Q.
        • Zhang L.
        • Lu Z.
        Dehydrocostus lactone induces apoptosis and cell cycle arrest through regulation of JAK2/STAT3/PLK1 signaling pathway in human esophageal squamous cell carcinoma cells.
        Anticancer Agents Med Chem. 2021;
        • Kollur S.P.
        • Prasad S.K.
        • Pradeep S.
        • Veerapur R.
        • Patil S.S.
        • Amachawadi R.G.
        • RP S.
        • Lamraoui G.
        • Al-Kheraif A.A.
        • Elgorban A.M.
        • et al.
        Luteolin-fabricated ZnO nanostructures showed PLK-1 mediated anti-breast cancer activity.
        Biomolecules. 2021; 11
        • Bewersdorf J.P.
        • Zeidan A.M.
        Polo-like kinase inhibition as a therapeutic target in acute myeloid leukemia.
        Oncotarget. 2021; 12: 1314-1317
        • Deng S.
        • Lu X.
        • Zhang Z.
        • Meng R.
        • Li M.
        • Xia S.
        Identification and assessment of PLK1/2/3/4 in lung adenocarcinoma and lung squamous cell carcinoma: evidence from methylation profile.
        J Cell Mol Med. 2021; 25: 6652-6663
        • Weichert W.
        • Denkert C.
        • Schmidt M.
        • Gekeler V.
        • Wolf G.
        • Kobel M.
        • Dietel M.
        • Hauptmann S.
        Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma.
        Br J Cancer. 2004; 90: 815-821
        • Lin S.F.
        • Yeh C.N.
        • Huang Y.T.
        • Chou T.C.
        • Wong R.J.
        Therapeutic inhibition of polo-like kinases in anaplastic thyroid cancer.
        Cancer Sci. 2021; 112: 803-814
        • Hartwell L.H.
        • Kastan M.B.
        Cell cycle control and cancer.
        Science. 1994; 266: 1821-1828
        • Gusterson B.A.
        • Warburton M.J.
        • Mitchell D.
        • Ellison M.
        • Neville A.M.
        • Rudland P.S.
        Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases.
        Cancer Res. 1982; 42: 4763-4770
        • Harbeck N.
        • Penault-Llorca F.
        • Cortes J.
        • Gnant M.
        • Houssami N.
        • Poortmans P.
        • Ruddy K.
        • Tsang J.
        • Cardoso F.
        Breast cancer.
        Nat Rev Dis Primers. 2019; 5: 66
        • Akram M.
        • Iqbal M.
        • Daniyal M.
        • Khan A.U.
        Awareness and current knowledge of breast cancer.
        Biol Res. 2017; 50: 33
        • Harris L.N.
        • Ismaila N.
        • McShane L.M.
        • Andre F.
        • Collyar D.E.
        • Gonzalez-Angulo A.M.
        • Hammond E.H.
        • Kuderer N.M.
        • Liu M.C.
        • Mennel R.G.
        • et al.
        Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American society of clinical oncology clinical practice guideline.
        J Clin Oncol. 2016; 34: 1134-1150
        • McCart Reed A.E.
        • Kutasovic J.R.
        • Lakhani S.R.
        • Simpson P.T.
        Invasive lobular carcinoma of the breast: morphology, biomarkers and 'omics.
        Breast Cancer Res. 2015; 17: 12
        • Somiari R.I.
        • Sullivan A.
        • Russell S.
        • Somiari S.
        • Hu H.
        • Jordan R.
        • George A.
        • Katenhusen R.
        • Buchowiecka A.
        • Arciero C.
        • et al.
        High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast.
        Proteomics. 2003; 3: 1863-1873
        • Mateo A.M.
        • Pezzi T.A.
        • Sundermeyer M.
        • Kelley C.A.
        • Klimberg V.S.
        • Pezzi C.M.
        Chemotherapy significantly improves survival for patients with T1c-T2N0M0 medullary breast cancer: 3739 cases from the national cancer data base.
        Ann Surg Oncol. 2017; 24: 1050-1056
        • Clauser P.
        • Marino M.A.
        • Baltzer P.A.
        • Bazzocchi M.
        • Zuiani C.
        Management of atypical lobular hyperplasia, atypical ductal hyperplasia, and lobular carcinoma in situ.
        Expert Rev Anticancer Ther. 2016; 16: 335-346
        • Chuba P.J.
        • Hamre M.R.
        • Yap J.
        • Severson R.K.
        • Lucas D.
        • Shamsa F.
        • Aref A.
        Bilateral risk for subsequent breast cancer after lobular carcinoma-in-situ: analysis of surveillance, epidemiology, and end results data.
        J Clin Oncol. 2005; 23: 5534-5541
        • Heim E.
        • Valach L.
        • Schaffner L.
        Coping and psychosocial adaptation: longitudinal effects over time and stages in breast cancer.
        Psychosom Med. 1997; 59: 408-418
        • Bednarek A.K.
        • Sahin A.
        • Brenner A.J.
        • Johnston D.A.
        • Aldaz C.M.
        Analysis of telomerase activity levels in breast cancer: positive detection at the in situ breast carcinoma stage.
        Clin Cancer Res. 1997; 3: 11-16
        • Neuman H.B.
        • Morrogh M.
        • Gonen M.
        • Van Zee K.J.
        • Morrow M.
        • King T.A.
        Stage IV breast cancer in the era of targeted therapy: does surgery of the primary tumor matter?.
        Cancer. 2010; 116: 1226-1233
        • Segal R.
        • Evans W.
        • Johnson D.
        • Smith J.
        • Colletta S.
        • Gayton J.
        • Woodard S.
        • Wells G.
        • Reid R.
        Structured exercise improves physical functioning in women with stages I and II breast cancer: results of a randomized controlled trial.
        J Clin Oncol. 2001; 19: 657-665
        • Moran M.S.
        • Schnitt S.J.
        • Giuliano A.E.
        • Harris J.R.
        • Khan S.A.
        • Horton J.
        • Klimberg S.
        • Chavez-MacGregor M.
        • Freedman G.
        • Houssami N.
        • et al.
        Society of surgical oncology-American society for radiation oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer.
        Int J Radiat Oncol Biol Phys. 2014; 88: 553-564
        • Jacquillat C.
        • Weil M.
        • Baillet F.
        • Borel C.
        • Auclerc G.
        • de Maublanc M.A.
        • Housset M.
        • Forget G.
        • Thill L.
        • Soubrane C.
        • et al.
        Results of neoadjuvant chemotherapy and radiation therapy in the breast-conserving treatment of 250 patients with all stages of infiltrative breast cancer.
        Cancer. 1990; 66: 119-129
        • Maughan K.L.
        • Lutterbie M.A.
        • Ham P.S.
        Treatment of breast cancer.
        Am Fam Physician. 2010; 81: 1339-1346
        • Coleman M.P.
        • Quaresma M.
        • Berrino F.
        • Lutz J.M.
        • De Angelis R.
        • Capocaccia R.
        • Baili P.
        • Rachet B.
        • Gatta G.
        • Hakulinen T.
        • et al.
        Cancer survival in five continents: a worldwide population-based study (CONCORD).
        Lancet Oncol. 2008; 9: 730-756
        • Ruan L.W.
        • Li P.P.
        • Jin L.P.
        SKA3 promotes cell growth in breast cancer by inhibiting PLK-1 protein degradation.
        Technol Cancer Res Treat. 2020; 191533033820947488
        • Ergul M.
        • Bakar-Ates F.
        RO3280: a Novel PLK1 inhibitor, suppressed the proliferation of MCF-7 breast cancer cells through the induction of cell cycle arrest at G2/M point.
        Anticancer Agents Med Chem. 2019; 19: 1846-1854
        • Yao Y.D.
        • Sun T.M.
        • Huang S.Y.
        • Dou S.
        • Lin L.
        • Chen J.N.
        • Ruan J.B.
        • Mao C.Q.
        • Yu F.Y.
        • Zeng M.S.
        • et al.
        Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis.
        Sci Transl Med. 2012; 4 (130ra148)
        • Montaudon E.
        • Nikitorowicz-Buniak J.
        • Sourd L.
        • Morisset L.
        • El Botty R.
        • Huguet L.
        • Dahmani A.
        • Painsec P.
        • Nemati F.
        • Vacher S.
        • et al.
        PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance.
        Nat Commun. 2020; 11: 4053
        • de Carcer G.
        • Venkateswaran S.V.
        • Salgueiro L.
        • El Bakkali A.
        • Somogyi K.
        • Rowald K.
        • Montanes P.
        • Sanclemente M.
        • Escobar B.
        • de Martino A.
        • et al.
        Plk1 overexpression induces chromosomal instability and suppresses tumor development.
        Nat Commun. 2018; 9: 3012
        • Kim J.H.
        • Lee J.O.
        • Lee S.K.
        • Kim N.
        • You G.Y.
        • Moon J.W.
        • Sha J.
        • Kim S.J.
        • Park S.H.
        • Kim H.S.
        Celastrol suppresses breast cancer MCF-7 cell viability via the AMP-activated protein kinase (AMPK)-induced p53-polo like kinase 2 (PLK-2) pathway.
        Cell Signal. 2013; 25: 805-813
        • Naik M.U.
        • Pham N.T.
        • Beebe K.
        • Dai W.
        • Naik U.P.
        Calcium-dependent inhibition of polo-like kinase 3 activity by CIB1 in breast cancer cells.
        Int J Cancer. 2011; 128: 587-596
        • Weichert W.
        • Kristiansen G.
        • Winzer K.J.
        • Schmidt M.
        • Gekeler V.
        • Noske A.
        • Muller B.M.
        • Niesporek S.
        • Dietel M.
        • Denkert C.
        Polo-like kinase isoforms in breast cancer: expression patterns and prognostic implications.
        Virchows Arch. 2005; 446: 442-450
        • Lei Q.
        • Xiong L.
        • Xia Y.
        • Feng Z.
        • Gao T.
        • Wei W.
        • Song X.
        • Ye T.
        • Wang N.
        • Peng C.
        • et al.
        YLT-11, a novel PLK4 inhibitor, inhibits human breast cancer growth via inducing maladjusted centriole duplication and mitotic defect.
        Cell Death Dis. 2018; 9: 1066
        • Kazazian K.
        • Go C.
        • Wu H.
        • Brashavitskaya O.
        • Xu R.
        • Dennis J.W.
        • Gingras A.C.
        • Swallow C.J.
        Plk4 promotes cancer invasion and metastasis through Arp2/3 complex regulation of the actin cytoskeleton.
        Cancer Res. 2017; 77: 434-447
        • Rosario C.O.
        • Kazazian K.
        • Zih F.S.
        • Brashavitskaya O.
        • Haffani Y.
        • Xu R.S.
        • George A.
        • Dennis J.W.
        • Swallow C.J.
        A novel role for Plk4 in regulating cell spreading and motility.
        Oncogene. 2015; 34: 3441-3451
        • de Carcer G.
        • Escobar B.
        • Higuero A.M.
        • Garcia L.
        • Anson A.
        • Perez G.
        • Mollejo M.
        • Manning G.
        • Melendez B.
        • Abad-Rodriguez J.
        • et al.
        Plk5, a polo box domain-only protein with specific roles in neuron differentiation and glioblastoma suppression.
        Mol Cell Biol. 2011; 31: 1225-1239
        • Li Z.
        • Hao P.
        • Wu Q.
        • Li F.
        • Zhao J.
        • Wu K.
        • Qu C.
        • Chen Y.
        • Li M.
        • Chen X.
        • et al.
        Genetic mutations associated with metastatic clear cell renal cell carcinoma.
        Oncotarget. 2016; 7: 16172-16179
        • Zeng Y.
        • Li N.
        • Liu W.
        • Zeng M.
        • Cheng J.
        • Huang J.
        Analyses of expressions and prognostic values of Polo-like kinases in non-small cell lung cancer.
        J Cancer Res Clin Oncol. 2020; 146: 2447-2460
        • Auguste A.
        • Blanc-Durand F.
        • Deloger M.
        • Le Formal A.
        • Bareja R.
        • Wilkes D.C.
        • Richon C.
        • Brunn B.
        • Caron O.
        • Devouassoux-Shisheboran M.
        • et al.
        Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) beyond SMARCA4 mutations: a comprehensive genomic analysis.
        Cells. 2020; 9
        • Bucur O.
        • Stancu A.L.
        • Muraru M.S.
        • Melet A.
        • Petrescu S.M.
        • Khosravi-Far R.
        PLK1 is a binding partner and a negative regulator of FOXO3 tumor suppressor.
        Discoveries (Craiova). 2014; 2
        • Gheghiani L.
        • Wang L.
        • Zhang Y.
        • Moore X.T.R.
        • Zhang J.
        • Smith S.C.
        • Tian Y.
        • Wang L.
        • Turner K.
        • Jackson-Cook C.K.
        • et al.
        PLK1 induces chromosomal instability and overrides cell-cycle checkpoints to drive tumorigenesis.
        Cancer Res. 2021; 81: 1293-1307
        • Ruf S.
        • Heberle A.M.
        • Langelaar-Makkinje M.
        • Gelino S.
        • Wilkinson D.
        • Gerbeth C.
        • Schwarz J.J.
        • Holzwarth B.
        • Warscheid B.
        • Meisinger C.
        • et al.
        PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy.
        Autophagy. 2017; 13: 486-505
        • Mo H.
        • He J.
        • Yuan Z.
        • Wu Z.
        • Liu B.
        • Lin X.
        • Guan J.
        PLK1 contributes to autophagy by regulating MYC stabilization in osteosarcoma cells.
        Onco Targets Ther. 2019; 12: 7527-7536
        • Kumar S.
        • Kim J.
        PLK-1 targeted inhibitors and their potential against tumorigenesis.
        Biomed Res Int. 2015; 2015705745
        • Uckun F.M.
        • Ozer Z.
        • Qazi S.
        • Tuel-Ahlgren L.
        • Mao C.
        Polo-like-kinase 1 (PLK1) as a molecular target to overcome SYK-mediated resistance of B-lineage acute lymphoblastic leukaemia cells to oxidative stress.
        Br J Haematol. 2010; 148: 714-725
        • Liu Z.
        • Ren J.
        • Cao J.
        • He J.
        • Yao X.
        • Jin C.
        • Xue Y.
        Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes.
        Brief Bioinform. 2013; 14: 344-360
      1. A PLK4 inhibitor has single-agent activity in preclinical tumor models.
        Cancer Discov. 2014; 4: OF11
        • Zhang J.
        • Wang Y.
        • Li J.
        • Zhao W.
        • Yang Z.
        • Feng Y.
        Alpha-Santalol functionalized chitosan nanoparticles as efficient inhibitors of polo-like kinase in triple negative breast cancer.
        RSC Adv. 2020; 10: 5487-5501
        • Garland L.L.
        • Taylor C.
        • Pilkington D.L.
        • Cohen J.L.
        • Von Hoff D.D.
        A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors.
        Clin Cancer Res. 2006; 12: 5182-5189
        • Yeow Z.Y.
        • Lambrus B.G.
        • Marlow R.
        • Zhan K.H.
        • Durin M.A.
        • Evans L.T.
        • Scott P.M.
        • Phan T.
        • Park E.
        • Ruiz L.A.
        • et al.
        Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer.
        Nature. 2020; 585: 447-452