Advertisement

Study on the use of Nanostring nCounter to analyze RNA extracted from formalin-fixed-paraffin-embedded and fresh frozen bladder cancer tissues

      Highlights

      • There is a high correlation between nCounter and RNA-seq data analysis the same sample.
      • Data from nCounter analysis of FFPE tissue correlated highly with data from RNA-seq analysis of FFPE tissue and fresh frozen tissue.
      • nCounter makes FFPE tissue avaliable in the field of molecular analysis.

      Abstract

      Formalin-fixed paraffin-embedded (FFPE) tissue is the most common source of archived material for genomic medicine. However, FFPE tissue is suboptimal for high-throughput analyses, such as RNA sequencing, because the quality of nucleic acids in FFPE tissues is low. We compared RNA-seq with the nCounter system to evaluate use of FFPE tissue for genomic medicine. Twelve fresh frozen bladder cancer samples were analyzed by both RNA sequencing and nCounter, and matched FFPE samples, by nCounter. Gene-expression values obtained by these two platforms were compared by calculating Pearson correlation coefficients for each sample (across the set of matched genes) and for each matched gene (across the set of samples). For each sample, gene-expression levels measured by RNA sequencing highly correlated with those measured by nCounter (all Pearson's R > 0.8, P < 0.0001), as seen by hierarchical clustering. RNA sequencing results for fresh frozen tissues positively correlated with nCounter results for FFPE tissues (R ranged from 0.675 to 0.873, all P < 0.0001). Correlation and hierarchical-clustering analyses of nCounter data from the two specimens demonstrated a strong positive correlation between each group (R ranged from 0.779 to 0.977, all P < 0.0001). Our findings suggest that the nCounter system is useful for assaying archived-FFPE samples and that the gene-expression signatures obtained from FFPE samples represent those from fresh frozen tissues.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shabihkhani M.
        • Lucey G.M.
        • Wei B.
        • Mareninov S.
        • Lou J.J.
        • Vinters H.V.
        • Singer E.J.
        • Cloughesy T.F.
        • Yong W.H.
        The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings.
        Clin Biochem. 2014; 47: 258-266
        • von Ahlfen S.
        • Missel A.
        • Bendrat K.
        • Schlumpberger M.
        Determinants of RNA quality from FFPE samples.
        PLoS ONE. 2007; 2: e1261
        • Palmer-Toy D.E.
        • Krastins B.
        • Sarracino D.A.
        • Nadol Jr., J.B.
        • Merchant S.N
        Efficient method for the proteomic analysis of fixed and embedded tissues.
        J Proteome Res. 2005; 4: 2404-2411
        • Gilbert M.T.
        • Haselkorn T.
        • Bunce M.
        • Sanchez J.J.
        • Lucas S.B.
        • Jewell L.D.
        • Van Marck E.
        • Worobey M.
        The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when?.
        PLoS ONE. 2007; 2: e537
        • Meng W.
        • McElroy J.P.
        • Volinia S.
        • Palatini J.
        • Warner S.
        • Ayers L.W.
        • Palanichamy K.
        • Chakravarti A.
        • Lautenschlaeger T.
        Comparison of microRNA deep sequencing of matched formalin-fixed paraffin-embedded and fresh frozen cancer tissues.
        PLoS ONE. 2013; 8: e64393
        • Adiconis X.
        • Borges-Rivera D.
        • Satija R.
        • DeLuca D.S.
        • Busby M.A.
        • Berlin A.M.
        • Sivachenko A.
        • Thompson D.A.
        • Wysoker A.
        • Fennell T.
        • Gnirke A.
        • Pochet N.
        • Regev A.
        • Levin J.Z.
        Comparative analysis of RNA sequencing methods for degraded or low-input samples.
        Nat Methods. 2013; 10: 623-629
        • Zhao W.
        • He X.
        • Hoadley K.A.
        • Parker J.S.
        • Hayes D.N.
        • Perou C.M.
        Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling.
        BMC Genomics. 2014; 15: 419
        • Graw S.
        • Meier R.
        • Minn K.
        • Bloomer C.
        • Godwin A.K.
        • Fridley B.
        • Vlad A.
        • Beyerlein P.
        • Chien J.
        Robust gene expression and mutation analyses of RNA-sequencing of formalin-fixed diagnostic tumor samples.
        Sci Rep. 2015; 5: 12335
        • Eastel J.M.
        • Lam K.W.
        • Lee N.L.
        • Lok W.Y.
        • Tsang A.H.F.
        • Pei X.M.
        • Chan A.K.C.
        • Cho W.C.S.
        • Wong S.C.C.
        Application of NanoString technologies in companion diagnostic development.
        Expert Rev Mol Diagn. 2019; 19: 591-598
        • Talla S.B.
        • Rempel E.
        • Endris V.
        • Jenzer M.
        • Allgauer M.
        • Schwab C.
        • Kazdal D.
        • Stogbauer F.
        • Volckmar A.L.
        • Kocsmar I.
        • Neumann O.
        • Schirmacher P.
        • Zschabitz S.
        • Duensing S.
        • Budczies J.
        • Stenzinger A.
        • Kirchner M.
        Immuno-oncology gene expression profiling of formalin-fixed and paraffin-embedded clear cell renal cell carcinoma: performance comparison of the NanoString nCounter technology with targeted RNA sequencing.
        Genes Chromosomes Cancer. 2020; 59: 406-416
        • Zhao Y.
        • Mehta M.
        • Walton A.
        • Talsania K.
        • Levin Y.
        • Shetty J.
        • Gillanders E.M.
        • Tran B.
        • Carrick D.M.
        Robustness of RNA sequencing on older formalin-fixed paraffin-embedded tissue from high-grade ovarian serous adenocarcinomas.
        PLoS ONE. 2019; 14e0216050
        • Groelz D.
        • Viertler C.
        • Pabst D.
        • Dettmann N.
        • Zatloukal K.
        Impact of storage conditions on the quality of nucleic acids in paraffin embedded tissues.
        PLoS ONE. 2018; 13e0203608
        • Micke P.
        • Ohshima M.
        • Tahmasebpoor S.
        • Ren Z.P.
        • Ostman A.
        • Ponten F.
        • Botling J.
        Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens.
        Lab Invest. 2006; 86: 202-211
        • Sun H.
        • Sun R.
        • Hao M.
        • Wang Y.
        • Zhang X.
        • Liu Y.
        • Cong X.
        Effect of duration of ex vivo ischemia time and storage period on RNA quality in biobanked human renal cell carcinoma tissue.
        Ann Surg Oncol. 2016; 23: 297-304
        • Dama E.
        • Tillhon M.
        • Bertalot G.
        • de Santis F.
        • Troglio F.
        • Pessina S.
        • Passaro A.
        • Pece S.
        • de Marinis F.
        • Dell'Orto P.
        • Viale G.
        • Spaggiari L.
        • Di Fiore P.P.
        • Bianchi F.
        • Barberis M.
        • Vecchi M.
        Sensitive and affordable diagnostic assay for the quantitative detection of anaplastic lymphoma kinase (ALK) alterations in patients with non-small cell lung cancer.
        Oncotarget. 2016; 7: 37160-37176
        • Morten B.C.
        • Scott R.J.
        • Avery-Kiejda K.A.
        Comparison of the quantigene 2.0 assay and real-time RT-PCR in the detection of p53 Isoform mRNA expression in formalin-fixed paraffin-embedded tissues- a preliminary study.
        PLoS ONE. 2016; 11e0165930
        • Krafft A.E.
        • Duncan B.W.
        • Bijwaard K.E.
        • Taubenberger J.K.
        • Lichy J.H.
        Optimization of the isolation and amplification of RNA from formalin-fixed, paraffin-embedded tissue: the armed forces institute of pathology experience and literature review.
        Mol Diagn. 1997; 2: 217-230
        • Godfrey T.E.
        • Kim S.H.
        • Chavira M.
        • Ruff D.W.
        • Warren R.S.
        • Gray J.W.
        • Jensen R.H.
        Quantitative mRNA expression analysis from formalin-fixed, paraffin-embedded tissues using 5′ nuclease quantitative reverse transcription-polymerase chain reaction.
        J Mol Diagn. 2000; 2: 84-91
        • Farragher S.M.
        • Tanney A.
        • Kennedy R.D.
        • Paul Harkin D.
        RNA expression analysis from formalin fixed paraffin embedded tissues.
        Histochem Cell Biol. 2008; 130: 435-445
        • Abrahamsen H.N.
        • Steiniche T.
        • Nexo E.
        • Hamilton-Dutoit S.J.
        • Sorensen B.S.
        Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction: a methodological study on lymph nodes from melanoma patients.
        J Mol Diagn. 2003; 5: 34-41
        • Malkov V.A.
        • Serikawa K.A.
        • Balantac N.
        • Watters J.
        • Geiss G.
        • Mashadi-Hossein A.
        • Fare T.
        Multiplexed measurements of gene signatures in different analytes using the nanostring nCounter assay system.
        BMC Res Notes. 2009; 2: 80
        • Chatterjee A.
        • Leichter A.L.
        • Fan V.
        • Tsai P.
        • Purcell R.V.
        • Sullivan M.J.
        • Eccles M.R.
        A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients.
        Sci Rep. 2015; 5: 10438
        • De Preter K.
        • Vermeulen J.
        • Brors B.
        • Delattre O.
        • Eggert A.
        • Fischer M.
        • Janoueix-Lerosey I.
        • Lavarino C.
        • Maris J.M.
        • Mora J.
        • Nakagawara A.
        • Oberthuer A.
        • Ohira M.
        • Schleiermacher G.
        • Schramm A.
        • Schulte J.H.
        • Wang Q.
        • Westermann F.
        • Speleman F.
        • Vandesompele J.
        Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature.
        Clin Cancer Res. 2010; 16: 1532-1541
        • Northcott P.A.
        • Shih D.J.
        • Remke M.
        • Cho Y.J.
        • Kool M.
        • Hawkins C.
        • Eberhart C.G.
        • Dubuc A.
        • Guettouche T.
        • Cardentey Y.
        • Bouffet E.
        • Pomeroy S.L.
        • Marra M.
        • Malkin D.
        • Rutka J.T.
        • Korshunov A.
        • Pfister S.
        • Taylor M.D.
        Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples.
        Acta Neuropathol. 2012; 123: 615-626
        • Reis P.P.
        • Waldron L.
        • Goswami R.S.
        • Xu W.
        • Xuan Y.
        • Perez-Ordonez B.
        • Gullane P.
        • Irish J.
        • Jurisica I.
        Kamel-Reid S. mRNA transcript quantification in archival samples using multiplexed, color-coded probes.
        BMC Biotechnol. 2011; 11: 46
        • Brooks M.
        • Mo Q.
        • Krasnow R.
        • Ho P.L.
        • Lee Y.C.
        • Xiao J.
        • Kurtova A.
        • Lerner S.
        • Godoy G.
        • Jian W.
        • Castro P.
        • Chen F.
        • Rowley D.
        • Ittmann M.
        • Chan K.S.
        Positive association of collagen type I with non-muscle invasive bladder cancer progression.
        Oncotarget. 2016; 7: 82609-82619
        • Lee H.Y.
        • Li C.C.
        • Huang C.N.
        • Li W.M.
        • Yeh H.C.
        • Ke H.L.
        • Yang K.F.
        • Liang P.I.
        • Li C.F.
        • Wu W.J.
        INHBA overexpression indicates poor prognosis in urothelial carcinoma of urinary bladder and upper tract.
        J Surg Oncol. 2015; 111: 414-422