Advertisement

The hsa-miR-516a-5p and hsa-miR-516b-5p microRNAs reduce the migration and invasion on T98G glioblastoma cell line

      Highlights

      • hsa-miR-516a-5p and hsa-miR-516b-5p induced significant changes on the migration and invasion processes in T98G cells.
      • .The results suggest that both miRNAs could be playing an important role in the control of tumor progression towards metastasis
      • In-silico analysis showed that target genes of these miRNAs are involved in cell adhesion important for cancer progression

      Abstract

      microRNAs (miRNAs) are involved in numerous functions and processes in the brain and other organs through the regulation of gene and protein expression. miRNA dysregulation is associated with the development of several diseases, including the brain and Central Nervous System cancer (CNS). The hsa-miR-516a-5p and hsa-miR-516b-5p are involved in proliferation, migration, and invasion in different tumor models, but their antitumor effect has not been evaluated in cancer of CNS. Therefore, we aimed to assess the effect of the miRNAs hsa-miR-516a-5p and miRNA hsa-miR-516b-5p on the Glioblastoma cell line (T98G). We used synthetic miRNA mimics to induce the overexpression of both miRNAs in the cell line, which was corroborated by RT-qPCR. Next, we evaluated the effect on proliferation, migration, and invasion using the CyQuant direct kit, ThinCert ™ inserts and invasion BioCoat ™ Matrigel® Invasion Chambers. We found upregulation of these miRNAs induced significant changes on the migration and invasion processes of T98G cells, but not affected the proliferation rate. These results suggest that both microRNAs could be playing an important role in the control of tumor progression towards metastasis. The bioinformatics analysis showed that target genes for these miRNAs are involved in different biological processes such as in cell adhesion molecule binding and cell junction disassembly, which are important for cancer progression. Further studies and experimental validation are needed to identify the genes regulated by microRNAs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Touat M.
        • Idbaih A.
        • Sanson M.
        • Ligon K.L.
        Glioblastoma targeted therapy: updated approaches from recent biological insights.
        Ann Oncol Off J Eur Soc Med Oncol. 2017; 28 (Jul): 1457-1472
        • Witthayanuwat S.
        • Pesee M.
        • Supaadirek C.
        • Supakalin N.
        • Thamronganantasakul K.
        • Krusun S.
        Survival analysis of glioblastoma multiforme,” Asian Pac.
        J Cancer Prev. 2018; 19 (Sep): 2613-2617
        • Delgado-López P.D.
        • Corrales-García E.M.
        Survival in glioblastoma: a review on the impact of treatment modalities.
        Clin Transl Oncol. 2016; 18: 1062-1071
        • Broekman M.L.
        • Maas S.L.N.
        • Abels E.R.
        • Mempel T.R.
        • Krichevsky A.M.
        • Breakefield X.O.
        Multidimensional communication in the microenvirons of glioblastoma.
        Nat Rev Neurol. 2018; 14 (Aug): 482-495
        • Darmanis S.
        • et al.
        Single-Cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma.
        Cell Rep. 2017; 21 (Oct): 1399-1410
        • Claes A.
        • Idema A.J.
        • Wesseling P.
        Diffuse glioma growth: A guerilla war.
        Acta Neuropathol. 2007; 114: 443-458
        • Sasmita A.O.
        • Wong Y.P.
        • Ling A.P.K.
        Biomarkers and therapeutic advances in glioblastoma multiforme.
        Asia Pac J Clin Oncol. 2018; 14 (Feb): 40-51
        • Saliminejad K.
        • Khorram Khorshid H.R.
        • Soleymani Fard S.
        • Ghaffari S.H.
        An overview of microRNAs: biology, functions, therapeutics, and analysis methods.
        J Cell Physiol. 2019; 234 (May): 5451-5465
        • Zhang Y.
        • Dutta A.
        • Abounader R.
        The role of microRNAs in glioma initiation and progression.
        Front Biosci. 2012; 17 (Landmark EdJan): 700-712
        • Mollaei H.
        • Safaralizadeh R.
        • Rostami Z.
        MicroRNA replacement therapy in cancer.
        J Cell Physiol. 2019; 234 (Aug): 12369-12384
        • Zhang H.
        • Jiang L.
        • Sun D.
        • Li J.
        • Ji Z.
        The role of miR-130a in cancer.
        Breast Cancer. 2017; 24: 521-527
        • Masoudi M.S.
        • Mehrabian E.
        • Mirzaei H.
        MiR-21: A key player in glioblastoma pathogenesis.
        J Cell Biochem. 2018; 119 (Feb): 1285-1290
        • Svoronos A.A.
        • Engelman D.M.
        • Slack F.J.
        OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer.
        Cancer Res. 2016; 76 (Jul): 3666-3670
        • Shin V.Y.
        • Chu K.-M.
        MiRNA as potential biomarkers and therapeutic targets for gastric cancer.
        World J Gastroenterol. 2014; 20 (Aug): 10432-10439
        • Rupaimoole R.
        • Slack F.J.
        MicroRNA therapeutics: towards a new era for the management of cancer and other diseases.
        Nat Rev Drug Discov. 2017; 16 (Feb): 203
        • Xin Y.
        • Huang M.
        • Guo W.W.
        • Huang Q.
        • zhen Zhang L.
        • Jiang G.
        Nano-based delivery of RNAi in cancer therapy.
        Mol Cancer. 2017; 16: 134
        • Huang W.
        • Lu Y.
        • Wang F.
        • Huang X.
        • Yu Z.
        Circular RNA circRNA_103809 accelerates bladder cancer progression and enhances chemo-resistance by activation of miR-516a-5p/FBXL18 Axis.
        Cancer Manag Res. 2020; 12 (Aug): 7561-7568
        • Ye X.Y.
        • Xu L.
        • Lu S.
        • Chen Z.W.
        MiR-516a-5p inhibits the proliferation of non-small cell lung cancer by targeting HIST3H2A.
        Int J Immunopathol Pharmacol. 2019; 33 (2058738419841481–2058738419841481)
        • Xu Y.
        • Jiang T.
        • Wu C.
        • Zhang Y.
        CircAKT3 inhibits glycolysis balance in lung cancer cells by regulating miR-516b-5p/STAT3 to inhibit cisplatin sensitivity.
        Biotechnol Lett. 2020; 42: 1123-1135
        • Chen P.P.
        • Zhang Z.S.
        • Wu J.C.
        • Zheng J.F.
        • Lin F.
        LncRNA SNHG12 promotes proliferation and epithelial mesenchymal transition in hepatocellular carcinoma through targeting HEG1 via miR-516a-5p.
        Cell Signal. 2021; 84109992
        • Xiu C.
        • Song R.
        • Jiang J.
        TUG1 promotes retinoblastoma progression by sponging miR-516b-5p to upregulate H6PD expression.
        Transl Cancer Res. 2021; 10 (Feb): 738-747
        • Fonseca Á.Y.G.
        • Santos J.G.
        • Aristizábal-Pachón A.F.
        An Overview of C19MC cluster subgroup 3 and cancer.
        Bentham Sci MicroRNa. 2021;
        • Xu P.
        • Ma Y.
        • Wu H.
        • Wang Y.L.
        Placenta-derived MicroRNAs in the pathophysiology of human pregnancy.
        Front Cell Dev Biol. 2021; 9
        • Donker R.B.
        • et al.
        The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes.
        Mol Hum Reprod. 2012; 18 (Aug): 417-424
        • Ward A.
        • et al.
        MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer.
        J Pathol. 2014; 233 (Aug): 368-379
        • Xie L.
        • Sadovsky Y.
        The function of miR-519d in cell migration, invasion, and proliferation suggests a role in early placentation.
        Placenta. 2016; 48 (Dec): 34-37
        • Zhou J.Y.
        • Zheng S.R.
        • Liu J.
        • Shi R.
        • Yu H.L.
        • Wei M.
        MiR-519d facilitates the progression and metastasis of cervical cancer through direct targeting Smad7.
        Cancer Cell Int. 2016; 16 (Mar): 21
        • Cao B.
        • Tan S.
        • Tang H.
        • Chen Y.
        • Shu P.
        miR‑512‑5p suppresses proliferation, migration and invasion, and induces apoptosis in non‑small cell lung cancer cells by targeting ETS1.
        Mol Med Rep. 2019; 19 (May): 3604-3614
        • Ma L.
        • Tao C.
        • Zhang Y.
        MicroRNA-517c functions as a tumor suppressor in hepatocellular carcinoma via downregulation of KPNA2 and inhibition of PI3K/AKT pathway.
        J Healthc Eng. 2022; 2022 (Jan)7026174
        • Forero D.A.
        • González-Giraldo Y.
        • Castro-Vega L.J.
        • Barreto G.E.
        qPCR-based methods for expression analysis of miRNAs.
        Biotechniques. 2019; 67: 192-199
        • Karagkouni D.
        • et al.
        DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions.
        Nucleic Acids Res. 2018; 46 (Jan): D239-D245
        • Chen J.
        • Bardes E.E.
        • Aronow B.J.
        • Jegga A.G.
        ToppGene Suite for gene list enrichment analysis and candidate gene prioritization.
        Nucleic Acids Res. 2009; 37 (Web Server issueJul): W305-W311
      1. Bioinformatics, Evolutionary Genomics “Calculate and draw custom Venn diagrams” https://bioinformatics.psb.ugent.be/webtools/Venn/.

        • Kavakiotis I.
        • Alexiou A.
        • Tastsoglou S.
        • Vlachos I.S.
        • Hatzigeorgiou A.G.
        DIANA-miTED: a microRNA tissue expression database.
        Nucleic Acids Res. 2022; 50 (Jan): D1055-D1061
        • Hayes J.
        • Peruzzi P.P.
        • Lawler S.
        MicroRNAs in cancer: biomarkers, functions and therapy.
        Trends Mol Med. 2014; 20 (Aug): 460-469
        • Harjunpää H.
        • Llort Asens M.
        • Guenther C.
        • Fagerholm S.C.
        Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment.
        Front Immunol. 2019; 10 (May): 1078
        • Lang K.
        • et al.
        TGFBI protein is increased in the urine of patients with high-grade urothelial carcinomas, and promotes cell proliferation and migration.
        Int J Mol Sci. 2019; 20 (Sep): 4483
        • Guo S.K.
        • Shen M.F.
        • Yao H.W.
        • Liu Y.S.
        Enhanced expression of TGFBI promotes the proliferation and migration of Glioma cells.
        Cell Physiol Biochem. 2018; 49: 1138-1150
        • Ackermann A.
        • et al.
        Downregulation of SPTAN1 is related to MLH1 deficiency and metastasis in colorectal cancer.
        PLoS One. 2019; 14 (–e0213411Mar)e0213411
        • Ackermann A.
        • Brieger A.
        The role of nonerythroid spectrin αII in cancer.
        J Oncol. 2019; 2019 (May)7079604
        • Luan S.
        • Fu P.
        • Wang X.
        • Gao Y.
        • Shi K.
        • Guo Y.
        Circular RNA circ-NCOR2 accelerates papillary thyroid cancer progression by sponging miR-516a-5p to upregulate metastasis-associated protein 2 expression.
        J Int Med Res. 2020; 48 (300060520934659–300060520934659Sep)
        • Yang A.
        • et al.
        Effects of the tight junction protein CLDN6 on cell migration and invasion in high-grade meningioma.
        World Neurosurg. 2021; 151: e208-e216
        • Friedl P.
        • Mayor R.
        Tuning collective cell migration by cell-cell junction regulation.
        Cold Spring Harb Perspect Biol. 2017; 9 (Apr)a029199
        • Cano A.
        • et al.
        The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression.
        Nat Cell Biol. 2000; 2: 76-83
        • Sterneck E.
        • Poria D.K.
        • Balamurugan K.
        Slug and E-cadherin: stealth accomplices?.
        Front Mol Biosci. 2020; 7 (Jul): 138
        • Muralidharan-Chari V.
        • et al.
        ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles.
        Curr Biol. 2009; 19 (Dec): 1875-1885
        • Hongu T.
        • Yamauchi Y.
        • Funakoshi Y.
        • Katagiri N.
        • Ohbayashi N.
        • Kanaho Y.
        Pathological functions of the small GTPase Arf6 in cancer progression: tumor angiogenesis and metastasis.
        Small GTPases. 2016; 7 (Apr): 47-53
        • Hu Y.
        • et al.
        Snail2 induced E-cadherin suppression and metastasis in lung carcinoma facilitated by G9a and HDACs.
        Cell Adhes Migr. 2019; 13 (Dec): 285-292
        • Fan L.
        • et al.
        Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10.
        Theranostics. 2020; 10 (Apr): 5895-5913
        • Hu Y.
        • et al.
        Epigenetic suppression of E-cadherin expression by Snail2 during the metastasis of colorectal cancer.
        Clin Epigenetics. 2018; 10 (Dec): 154
        • Fenouille N.
        • et al.
        The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion.
        PLoS One. 2012; 7 (–e40378): e40378
        • Hu Z.
        • et al.
        GEP100 regulates epidermal growth factor-induced MDA-MB-231 breast cancer cell invasion through the activation of Arf6/ERK/uPAR signaling pathway.
        Exp Cell Res. 2013; 319: 1932-1941
        • Li M.
        • et al.
        EFA6A enhances Glioma cell invasion through ADP ribosylation factor 6/extracellular signal–regulated kinase signaling.
        Cancer Res. 2006; 66 (Feb): 1583-1590
        • Lüttgenau S.M.
        • et al.
        Pals1 prevents Rac1-dependent colorectal cancer cell metastasis by inhibiting Arf6.
        Mol Cancer. 2021; 20 (May): 74
        • Zhao Y.
        • Wang Y.
        • Xing G.
        miR-516b functions as a tumor suppressor by directly modulating CCNG1 expression in esophageal squamous cell carcinoma.
        Biomed Pharmacother. 2018; 106: 1650-1660
        • Huang Y.
        • Jiang L.
        • Wei G.
        Circ_0006168 promotes the migration, invasion and proliferation of esophageal squamous cell carcinoma cells via miR-516b-5p-dependent regulation of XBP1.
        Onco Targets Ther. 2021; 14 (Apr): 2475-2488
        • Shi W.
        • et al.
        Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells.
        J Cancer. 2019; 10: 2035-2046
        • Song H.
        • et al.
        Long non‑coding RNA FEZF1‑AS1 facilitates non‑small cell lung cancer progression via the ITGA11/miR‑516b‑5p axis.
        Int J Oncol. 2020; 57 (Dec): 1333-1347

      Further reading

        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative CT method.
        Nat Protoc. 2008; 3: 1101-1108