Advertisement
Rapid Communication| Volume 272, P16-22, April 2023

Download started.

Ok

A t(4;13)(q21;q14) translocation in B-cell chronic lymphocytic leukemia causing concomitant homozygous DLEU2/miR15a/miR16-1 and heterozygous ARHGAP24 deletions

      Highlights

      • A novel t(4;13) translocation with 13q14/4q21 flanking deletions is found in CLL.
      • The 4q21 deletion leads to the ARHGAP24 tumor suppressor gene down-regulation.
      • No additional mutation was found, indicating the relevance of the t(4;13) in CLL.
      • The t(4;13) persisted in the blood karyotype from the CLL onset to its regression.
      • The combination of 13q14/4q21 aberrations has a favorable prognostic impact in CLL.

      Abstract

      13q14 deletion is the most recurrent chromosomal aberration reported in B-CLL, having a favorable prognostic significance when occurring as the sole cytogenetic alteration. However, its clinical outcome is also related to the deletion size and number of cells with the del(13)(q14) deletion. In 10% of cases, 13q14 deletion arises following a translocation event with multiple partner chromosomes, whose oncogenic impact has not been investigated so far due to the assumption of a possible role as a passenger mutation.
      Here, we describe a t(4;13)(q21;q14) translocation occurring in a B-CLL case from the diagnosis to spontaneous regression. FISH and SNP-array analyses revealed a heterozygous deletion at 4q21, leading to the loss of the Rho GTPase Activating Protein 24 (ARHGAP24) tumor suppressor gene, down-regulated in the patient RNA, in addition to the homozygous deletion at 13q14 involving DLEU2/miR15a/miR16–1 genes. Interestingly, targeted Next Generation Sequencing analysis of 54 genes related to B-CLL indicated no additional somatic mutation in the patient, underlining the relevance of this t(4;13)(q21;q14) aberration in the leukemogenic process.
      In all tested RNA samples, RT-qPCR experiments assessed the downregulation of the PCNA, MKI67, and TOP2A proliferation factor genes, and the BCL2 anti-apoptotic gene as well as the up-regulation of TP53 and CDKN1A tumor suppressors, indicating a low proliferation potential of the cells harboring the aberration. In addition, RNA-seq analyses identified four chimeric transcripts (ATG4B::PTMA, OAZ1::PTMA, ZFP36::PTMA, and PIM3::BRD1), two of which (ATG4B::PTMA and ZFP36::PTMA) failed to be detected at the remission, suggesting a possible transcriptional remodeling during the disease course. Overall, our results indicate a favorable prognostic impact of the described chromosomal aberration, as it arises a permissive molecular landscape to the spontaneous B-CLL regression in the patient, highlighting ARHGAP24 as a potentially relevant concurrent alteration to the 13q14 deletion in delineating B-CLL disease evolution.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • De Braekeleer M.
        • Guéganic N.
        • Tous C.
        • Le Bris M.J.
        • Basinko A.
        • Morel F.
        • Douet-Guilbert N
        Translocations involving 13q14 without associated deletion in chronic lymphoid leukaemia target DLEU2.
        Br J Haematol. 2016; 172: 467-469https://doi.org/10.1111/bjh.13495
        • Yi S.
        • Li H.
        • Li Z.
        • Xiong W.
        • Liu H.
        • Liu W.
        • Lv R.
        • Yu Z.
        • Zou D.
        • Xu Y.
        • An G.
        • Qiu L.
        The prognostic significance of 13q deletions of different sizes in patients with B-cell chronic lymphoproliferative disorders: a retrospective study.
        Int J Hematol. 2017; 106: 418-425https://doi.org/10.1007/s12185-017-2240-2
        • Dal Bo M.
        • Rossi F.M.
        • Rossi D.
        • Deambrogi C.
        • Bertoni F.
        • Del Giudice I.
        • Palumbo G.
        • Nanni M.
        • Rinaldi A.
        • Kwee I.
        • Tissino E.
        • Corradini G.
        • Gozzetti A.
        • Cencini E.
        • Ladetto M.
        • Coletta A.M.
        • Luciano F.
        • Bulian P.
        • Pozzato G.
        • Laurenti L.
        • Forconi F.
        • Di Raimondo F.
        • Marasca R.
        • Del Poeta G.
        • Gaidano G.
        • Foà R.
        • Guarini A.
        • Gattei V
        13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia.
        Gene Chromos Cancer. 2011; 50: 633-643https://doi.org/10.1002/gcc.20885
        • Hernández J.
        • Hernández-Sánchez M.
        • Rodríguez-Vicente A.E.
        • Grossmann V.
        • Collado R.
        • Heras C.
        • Puiggros A.
        • Martín A.
        • Puig N.
        • Benito R.
        • Robledo C.
        • Delgado J.
        • González T.
        • Queizán J.A.
        • Galende J.
        • de la Fuente I.
        • Martín-Núñez G.
        • Alonso J.M.
        • Abrisqueta P.
        • Luño E.
        • Marugán I.
        • González-Gascón I.
        • Bosch F.
        • Kohlmann A.
        • González M.
        • Espinet B.
        • Hernández-Rivas J.M.
        A low frequency of losses in 11q chromosome is associated with better outcome and lower rate of genomic mutations in patients with chronic lymphocytic leukemia.
        PLoS ONE. 2015; 10e0143073https://doi.org/10.1371/journal.pone.0143073
        • Puiggros A.
        • Delgado J.
        • Rodriguez-Vicente A.
        • Collado R.
        • Aventín A.
        • Luño E.
        • Grau J.
        • Hernandez J.
        • Marugán I.
        • Ardanaz M.
        • González T.
        • Valiente A.
        • Osma M.
        • Calasanz M.J.
        • Sanzo C.
        • Carrió A.
        • Ortega M.
        • Santacruz R.
        • Abrisqueta P.
        • Abella E.
        • Bosch F.
        • Carbonell F.
        • Solé F.
        • Hernández J.M.
        • Espinet B.
        Biallelic losses of 13q do not confer a poorer outcome in chronic lymphocytic leukaemia: analysis of 627 patients with isolated 13q deletion.
        Br J Haematol. 2013; 163: 47-54https://doi.org/10.1111/bjh.12479
        • Van Dyke D.L.
        • Shanafelt T.D.
        • Call T.G.
        • Zent C.S.
        • Smoley S.A.
        • Rabe K.G.
        • Schwager S.M.
        • Sonbert J.C.
        • Slager S.L.
        • Kay N.E.
        A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukaemia.
        Br J Haematol. 2010; 148: 544-550https://doi.org/10.1111/j.1365-2141.2009.07982.x
        • Ouillette P.
        • Collins R.
        • Shakhan S.
        • Li J.
        • Li C.
        • Shedden K.
        • Malek S.N.
        The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia.
        Clini Cancer Res: An Off J Am Assoc Cancer Res. 2011; 17: 6778-6790https://doi.org/10.1158/1078-0432.ccr-11-0785
        • Hruba M.
        • Dvorak P.
        • Weberova L.
        • Subrt I.
        Independent coexistence of clones with 13q14 deletion at reciprocal translocation breakpoint and 13q14 interstitial deletion in chronic lymphocytic leukemia.
        Leuk Lymphoma. 2012; 53: 2054-2062https://doi.org/10.3109/10428194.2012.668682
        • Puiggros A.
        • Venturas M.
        • Salido M.
        • Blanco G.
        • Fernandez-Rodriguez C.
        • Collado R.
        • Valiente A.
        • Ruiz-Xivillé N.
        • Carrió A.
        • Ortuño F.J.
        • Luño E.
        • Calasanz M.J.
        • Ardanaz M.T.
        • Piñán M.
        • Talavera E.
        • González M.T.
        • Ortega M.
        • Marugán I.
        • Ferrer A.
        • Gimeno E.
        • Bellosillo B.
        • Delgado J.
        • Hernández J.
        • Hernández-Rivas J.M.
        • Espinet B.
        Interstitial 13q14 deletions detected in the karyotype and translocations with concomitant deletion at 13q14 in chronic lymphocytic leukemia: different genetic mechanisms but equivalent poorer clinical outcome.
        Gene Chromos Cancer. 2014; 53: 788-797https://doi.org/10.1002/gcc.22188
        • Gardiner A.C.
        • Corcoran M.M.
        • Oscier D.G.
        Cytogenetic, fluorescence in situ hybridisation, and clinical evaluation of translocations with concomitant deletion at 13q14 in chronic lymphocytic leukaemia.
        Gene Chromos Cancer. 1997; 20: 73-81https://doi.org/10.1002/(sici)1098-2264(199709)20:1<73::aid--gcc11>3.0.co;2-g
        • Herholz H.
        • Kern W.
        • Schnittger S.
        • Haferlach T.
        • Dicker F.
        • Haferlach C.
        Translocations as a mechanism for homozygous deletion of 13q14 and loss of the ATM gene in a patient with B-cell chronic lymphocytic leukemia.
        Cancer Genet Cytogenet. 2007; 174: 57-60https://doi.org/10.1016/j.cancergencyto.2006.11.006
        • Haferlach C.
        • Dicker F.
        • Schnittger S.
        • Kern W.
        • Haferlach T.
        Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping.
        Leukemia. 2007; 21: 2442-2451https://doi.org/10.1038/sj.leu.2404935
        • Struski S.
        • Helias C.
        • Gervais C.
        • Audhuy B.
        • Zamfir A.
        • Herbrecht R.
        • Lessard M.
        13q deletions in B-cell lymphoproliferative disorders: frequent association with translocation.
        Cancer Genet Cytogenet. 2007; 174: 151-160https://doi.org/10.1016/j.cancergencyto.2006.12.004
      1. Bat Conservation International. Bat Conservation International. 2008. Available at: http://www.batcon.org Acessed December 15, 2011.

        • Tolomeo D.
        • L'Abbate A.
        • Lonoce A.
        • D'Addabbo P.
        • Miccoli M.F.
        • Lo Cunsolo C.
        • Iuzzolino P.
        • Palumbo O.
        • Carella M.
        • Racanelli V.
        • Mazza T.
        • Ottaviani E.
        • Martinelli G.
        • Macchia G.
        • Storlazzi C.T
        Concurrent chromothripsis events in a case of TP53 depleted acute myeloid leukemia with myelodysplasia-related changes.
        Cancer Genet. 2019; 237: 63-68https://doi.org/10.1016/j.cancergen.2019.06.009
        • Palumbo O.
        • Fichera M.
        • Palumbo P.
        • Rizzo R.
        • Mazzolla E.
        • Cocuzza D.M.
        • Carella M.
        • Mattina T.
        TBR1 is the candidate gene for intellectual disability in patients with a 2q24.2 interstitial deletion.
        Am J Med Genet Part A. 2014; 164a: 828-833https://doi.org/10.1002/ajmg.a.36363
        • Palumbo O.
        • Palumbo P.
        A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual Disability.
        Speech Delay Mild Dysmorph Feature. 2020; 11https://doi.org/10.3390/genes11060707
        • Storlazzi C.T.
        • Fioretos T.
        • Surace C.
        • Lonoce A.
        • Mastrorilli A.
        • Strömbeck B.
        • D'Addabbo P.
        • Iacovelli F.
        • Minervini C.
        • Aventin A.
        • Dastugue N.
        • Fonatsch C.
        • Hagemeijer A.
        • Jotterand M.
        • Mühlematter D.
        • Lafage-Pochitaloff M.
        • Nguyen-Khac F.
        • Schoch C.
        • Slovak M.L.
        • Smith A.
        • Solè F.
        • Van Roy N.
        • Johansson B.
        • Rocchi M
        MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene.
        Hum Mol Genet. 2006; 15: 933-942https://doi.org/10.1093/hmg/ddl010
        • Klampfl T.
        • Gisslinger H.
        • Harutyunyan A.S.
        • Nivarthi H.
        • Rumi E.
        • Milosevic J.D.
        • Them N.C.
        • Berg T.
        • Gisslinger B.
        • Pietra D.
        • Chen D.
        • Vladimer G.I.
        • Bagienski K.
        • Milanesi C.
        • Casetti I.C.
        • Sant'Antonio E.
        • Ferretti V.
        • Elena C.
        • Schischlik F.
        • Cleary C.
        • Six M.
        • Schalling M.
        • Schönegger A.
        • Bock C.
        • Malcovati L.
        • Pascutto C.
        • Superti-Furga G.
        • Cazzola M.
        • Kralovics R
        Somatic mutations of calreticulin in myeloproliferative neoplasms.
        N Engl J Med. 2013; 369: 2379-2390https://doi.org/10.1056/NEJMoa1311347
        • Furtado L.V.
        • Weigelin H.C.
        • Elenitoba-Johnson K.S.
        • Betz B.L.
        Detection of MPL mutations by a novel allele-specific PCR-based strategy.
        J Molecul Diagnost. 2013; 15 (JMD): 810-818https://doi.org/10.1016/j.jmoldx.2013.07.006
        • Ghia P.
        • Stamatopoulos K.
        • Belessi C.
        • Moreno C.
        • Stilgenbauer S.
        • Stevenson F.
        • Davi F.
        • Rosenquist R.
        ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia.
        Leukemia. 2007; 21: 1-3https://doi.org/10.1038/sj.leu.2404457
        • Hernández-Sánchez M.
        • Rodríguez-Vicente A.E.
        • González-Gascón Y.M.I.
        • Quijada-Álamo M.
        • Hernández-Sánchez J.M.
        • Martín-Izquierdo M.
        • Hernández-Rivas J.
        • Benito R.
        • Hernández-Rivas J.M.
        DNA damage response-related alterations define the genetic background of patients with chronic lymphocytic leukemia and chromosomal gains.
        Exp Hematol. 2019; 72: 9-13https://doi.org/10.1016/j.exphem.2019.02.003
      2. Quijada-Álamo M., Hernández-Sánchez M., Alonso-Pérez V., Rodríguez-Vicente A.E. CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition. 2020;34:1599–612, doi:10.1038/s41375-020-0714-3.

      3. Pérez-Carretero C., Hernández-Sánchez M., González T., Quijada-Álamo M., Martín-Izquierdo M., Hernández-Sánchez J.M., Vidal M.J., de Coca A.G., Aguilar C., Vargas-Pabón M., Alonso S., Sierra M., Rubio-Martínez A., Dávila J., Díaz-Valdés J.R., Queizán J.A., Hernández-Rivas J., Benito R., Rodríguez-Vicente AE. Chronic lymphocytic leukemia patients with IGH translocations are characterized by a distinct genetic landscape with prognostic implications. 2020;147:2780–92, doi:10.1002/ijc.33235.

      4. Quijada-Álamo M., Pérez-Carretero C., Hernández-Sánchez M., Rodríguez-Vicente A.E., Herrero A.B., Hernández-Sánchez J.M., Martín-Izquierdo M., Santos-Mínguez S., Del Rey M., González T., Rubio-Martínez A., García de Coca A., Dávila-Valls J., Hernández-Rivas J., Parker H., Strefford J.C., Benito R., Ordóñez J.L., Hernández-Rivas J.M. Dissecting the role of TP53 alterations in del(11q) chronic lymphocytic leukemia. 2021;11:e304, doi:10.1002/ctm2.304.

      5. Quijada-Álamo M., Hernández-Sánchez M. Biological significance of monoallelic and biallelic BIRC3 loss in del(11q) chronic lymphocytic leukemia progression. 2021;11:127, doi:10.1038/s41408-021-00520-5.

        • Robinson J.T.
        • Thorvaldsdóttir H.
        • Winckler W.
        • Guttman M.
        • Lander E.S.
        • Getz G.
        • Mesirov J.P.
        Integrative genomics viewer.
        Nat Biotechnol. 2011; 29: 24-26https://doi.org/10.1038/nbt.1754
      6. Tolomeo D., Agostini A., Macchia G., L'Abbate A., Severgnini M., Cifola I., Frassanito M.A., Racanelli V., Solimando A.G., Haglund F., Mertens F., Storlazzi C.T. BL1391: an established cell line from a human malignant peripheral nerve sheath tumor with unique genomic features. 2021;34:238–45, doi:10.1007/s13577-020-00418-7.

        • Nicorici D S.M.
        • Edgren H.
        • Kangaspeska S.
        • Murumagi A.K.O
        • et al.
        FusionCatcher—A tool for finding somatic fusion genes in paired-end RNA-sequencing data.
        bioRxiv [Internet]. 2014;
        • Yang C.
        • Wu S.
        • Mou Z.
        • Zhou Q.
        • Zhang Z.
        • Chen Y.
        • Ou Y.
        • Chen X.
        • Dai X.
        • Xu C.
        • Liu N.
        • Jiang H.
        Transcriptomic analysis identified ARHGAP family as a novel biomarker associated with tumor-promoting immune infiltration and nanomechanical characteristics in bladder cancer.
        Front Cell Dev Biol. 2021; 9657219https://doi.org/10.3389/fcell.2021.657219
        • Wang L.
        • Shen S.
        • Xiao H.
        • Ding F.
        • Wang M.
        • Li G.
        • Hu F.
        ARHGAP24 inhibits cell proliferation and cell cycle progression and induces apoptosis of lung cancer via a STAT6-WWP2-p27 axis.
        Carcinogenesis. 2020; 41: 711-721https://doi.org/10.1093/carcin/bgz144
        • Wang L.
        • Shen S.
        • Wang M.
        • Ding F.
        • Xiao H.
        • Li G.
        • Hu F.
        Rho GTPase activating protein 24 (ARHGAP24) silencing promotes lung cancer cell migration and invasion by activating β-catenin signaling.
        Med Sci Monit: Int Med J Exper Clin Res. 2019; 25: 21-31https://doi.org/10.12659/msm.911503
        • Saito K.
        • Mori M.
        • Kambara N.
        • Ohta Y.
        FilGAP, a GAP protein for Rac, regulates front-rear polarity and tumor cell migration through the ECM.
        Faseb j. 2021; 35: e21508https://doi.org/10.1096/fj.202002155R
        • Dai X.
        • Geng F.
        • Dai J.
        • Li M.
        • Liu M.
        Rho GTPase activating protein 24 (ARHGAP24) regulates the anti-cancer activity of sorafenib against breast cancer MDA-MB-231 cells via the signal transducer and activator of transcription 3 (STAT3) signaling pathway.
        Med Sci Monit. 2018; 24: 8669-8677https://doi.org/10.12659/msm.911394
        • Zhang S.
        • Sui L.
        • Zhuang J.
        • He S.
        • Song Y.
        • Ye Y.
        • Xia W.
        ARHGAP24 regulates cell ability and apoptosis of colorectal cancer cells via the regulation of P53.
        Oncol Lett. 2018; 16: 3517-3524https://doi.org/10.3892/ol.2018.9075
        • Wang L.
        • Wei W.Q.
        • Wu Z.Y.
        • Wang G.C.
        MicroRNA-590-5p regulates cell viability, apoptosis, migration and invasion of renal cell carcinoma cell lines through targeting ARHGAP24.
        Mol Biosyst. 2017; 13: 2564-2573https://doi.org/10.1039/c7mb00406k
        • Solimando A.G.
        • Ribatti D.
        • Vacca A.
        • Einsele H.
        Targeting B-cell non Hodgkin lymphoma: new and old tricks.
        Leuk Res. 2016; 42: 93-104https://doi.org/10.1016/j.leukres.2015.11.001
        • Spina V.
        • Mensah A.A.
        • Arribas A.J.
        Biology of splenic and nodal marginal zone lymphomas.
        Ann Lymphoma. 2021; 5
        • Del Giudice I.
        • Chiaretti S.
        • Tavolaro S.
        • De Propris M.S.
        • Maggio R.
        • Mancini F.
        • Peragine N.
        • Santangelo S.
        • Marinelli M.
        • Mauro F.R.
        • Guarini A.
        • Foà R.
        Spontaneous regression of chronic lymphocytic leukemia: clinical and biologic features of 9 cases.
        Blood. 2009; 114: 638-646https://doi.org/10.1182/blood-2008-12-196568
        • Kwok M.
        • Oldreive C.
        • Rawstron A.C.
        • Goel A.
        • Papatzikas G.
        • Jones R.E.
        • Drennan S.
        • Agathanggelou A.
        • Sharma-Oates A.
        • Evans P.
        • Smith E.
        • Dalal S.
        • Mao J.
        • Hollows R.
        • Gordon N.
        • Hamada M.
        • Davies N.J.
        • Parry H.
        • Beggs A.D.
        • Munir T.
        • Moreton P.
        • Paneesha S.
        • Pratt G.
        • Taylor A.M.R.
        • Forconi F.
        • Baird D.M.
        • Cazier J.B.
        • Moss P.
        • Hillmen P.
        • Stankovic T.
        Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL.
        Blood. 2020; 135: 411-428https://doi.org/10.1182/blood.2019001262
        • Ikonnikova A.Y.
        • Ammour Y.I.
        • Snezhkina A.V.
        • Krasnov G.S.
        • Kudryavtseva A.V.
        • Nasedkina T.V.
        [Identification of fusion transcripts in leukеmic cells by whole-transcriptome sequencing].
        Mol Biol (Mosk). 2018; 52: 231-237https://doi.org/10.7868/s0026898418020064