Highlights
- •A novel t(4;13) translocation with 13q14/4q21 flanking deletions is found in CLL.
- •The 4q21 deletion leads to the ARHGAP24 tumor suppressor gene down-regulation.
- •No additional mutation was found, indicating the relevance of the t(4;13) in CLL.
- •The t(4;13) persisted in the blood karyotype from the CLL onset to its regression.
- •The combination of 13q14/4q21 aberrations has a favorable prognostic impact in CLL.
Abstract
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Cancer GeneticsReferences
- Translocations involving 13q14 without associated deletion in chronic lymphoid leukaemia target DLEU2.Br J Haematol. 2016; 172: 467-469https://doi.org/10.1111/bjh.13495
- The prognostic significance of 13q deletions of different sizes in patients with B-cell chronic lymphoproliferative disorders: a retrospective study.Int J Hematol. 2017; 106: 418-425https://doi.org/10.1007/s12185-017-2240-2
- 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia.Gene Chromos Cancer. 2011; 50: 633-643https://doi.org/10.1002/gcc.20885
- A low frequency of losses in 11q chromosome is associated with better outcome and lower rate of genomic mutations in patients with chronic lymphocytic leukemia.PLoS ONE. 2015; 10e0143073https://doi.org/10.1371/journal.pone.0143073
- Biallelic losses of 13q do not confer a poorer outcome in chronic lymphocytic leukaemia: analysis of 627 patients with isolated 13q deletion.Br J Haematol. 2013; 163: 47-54https://doi.org/10.1111/bjh.12479
- A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukaemia.Br J Haematol. 2010; 148: 544-550https://doi.org/10.1111/j.1365-2141.2009.07982.x
- The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia.Clini Cancer Res: An Off J Am Assoc Cancer Res. 2011; 17: 6778-6790https://doi.org/10.1158/1078-0432.ccr-11-0785
- Independent coexistence of clones with 13q14 deletion at reciprocal translocation breakpoint and 13q14 interstitial deletion in chronic lymphocytic leukemia.Leuk Lymphoma. 2012; 53: 2054-2062https://doi.org/10.3109/10428194.2012.668682
- Interstitial 13q14 deletions detected in the karyotype and translocations with concomitant deletion at 13q14 in chronic lymphocytic leukemia: different genetic mechanisms but equivalent poorer clinical outcome.Gene Chromos Cancer. 2014; 53: 788-797https://doi.org/10.1002/gcc.22188
- Cytogenetic, fluorescence in situ hybridisation, and clinical evaluation of translocations with concomitant deletion at 13q14 in chronic lymphocytic leukaemia.Gene Chromos Cancer. 1997; 20: 73-81https://doi.org/10.1002/(sici)1098-2264(199709)20:1<73::aid--gcc11>3.0.co;2-g
- Translocations as a mechanism for homozygous deletion of 13q14 and loss of the ATM gene in a patient with B-cell chronic lymphocytic leukemia.Cancer Genet Cytogenet. 2007; 174: 57-60https://doi.org/10.1016/j.cancergencyto.2006.11.006
- Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping.Leukemia. 2007; 21: 2442-2451https://doi.org/10.1038/sj.leu.2404935
- 13q deletions in B-cell lymphoproliferative disorders: frequent association with translocation.Cancer Genet Cytogenet. 2007; 174: 151-160https://doi.org/10.1016/j.cancergencyto.2006.12.004
Bat Conservation International. Bat Conservation International. 2008. Available at: http://www.batcon.org Acessed December 15, 2011.
- Concurrent chromothripsis events in a case of TP53 depleted acute myeloid leukemia with myelodysplasia-related changes.Cancer Genet. 2019; 237: 63-68https://doi.org/10.1016/j.cancergen.2019.06.009
- TBR1 is the candidate gene for intellectual disability in patients with a 2q24.2 interstitial deletion.Am J Med Genet Part A. 2014; 164a: 828-833https://doi.org/10.1002/ajmg.a.36363
- A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual Disability.Speech Delay Mild Dysmorph Feature. 2020; 11https://doi.org/10.3390/genes11060707
- MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene.Hum Mol Genet. 2006; 15: 933-942https://doi.org/10.1093/hmg/ddl010
- Somatic mutations of calreticulin in myeloproliferative neoplasms.N Engl J Med. 2013; 369: 2379-2390https://doi.org/10.1056/NEJMoa1311347
- Detection of MPL mutations by a novel allele-specific PCR-based strategy.J Molecul Diagnost. 2013; 15 (JMD): 810-818https://doi.org/10.1016/j.jmoldx.2013.07.006
- ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia.Leukemia. 2007; 21: 1-3https://doi.org/10.1038/sj.leu.2404457
- DNA damage response-related alterations define the genetic background of patients with chronic lymphocytic leukemia and chromosomal gains.Exp Hematol. 2019; 72: 9-13https://doi.org/10.1016/j.exphem.2019.02.003
Quijada-Álamo M., Hernández-Sánchez M., Alonso-Pérez V., Rodríguez-Vicente A.E. CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition. 2020;34:1599–612, doi:10.1038/s41375-020-0714-3.
Pérez-Carretero C., Hernández-Sánchez M., González T., Quijada-Álamo M., Martín-Izquierdo M., Hernández-Sánchez J.M., Vidal M.J., de Coca A.G., Aguilar C., Vargas-Pabón M., Alonso S., Sierra M., Rubio-Martínez A., Dávila J., Díaz-Valdés J.R., Queizán J.A., Hernández-Rivas J., Benito R., Rodríguez-Vicente AE. Chronic lymphocytic leukemia patients with IGH translocations are characterized by a distinct genetic landscape with prognostic implications. 2020;147:2780–92, doi:10.1002/ijc.33235.
Quijada-Álamo M., Pérez-Carretero C., Hernández-Sánchez M., Rodríguez-Vicente A.E., Herrero A.B., Hernández-Sánchez J.M., Martín-Izquierdo M., Santos-Mínguez S., Del Rey M., González T., Rubio-Martínez A., García de Coca A., Dávila-Valls J., Hernández-Rivas J., Parker H., Strefford J.C., Benito R., Ordóñez J.L., Hernández-Rivas J.M. Dissecting the role of TP53 alterations in del(11q) chronic lymphocytic leukemia. 2021;11:e304, doi:10.1002/ctm2.304.
Quijada-Álamo M., Hernández-Sánchez M. Biological significance of monoallelic and biallelic BIRC3 loss in del(11q) chronic lymphocytic leukemia progression. 2021;11:127, doi:10.1038/s41408-021-00520-5.
- Integrative genomics viewer.Nat Biotechnol. 2011; 29: 24-26https://doi.org/10.1038/nbt.1754
Tolomeo D., Agostini A., Macchia G., L'Abbate A., Severgnini M., Cifola I., Frassanito M.A., Racanelli V., Solimando A.G., Haglund F., Mertens F., Storlazzi C.T. BL1391: an established cell line from a human malignant peripheral nerve sheath tumor with unique genomic features. 2021;34:238–45, doi:10.1007/s13577-020-00418-7.
- FusionCatcher—A tool for finding somatic fusion genes in paired-end RNA-sequencing data.bioRxiv [Internet]. 2014;
- Transcriptomic analysis identified ARHGAP family as a novel biomarker associated with tumor-promoting immune infiltration and nanomechanical characteristics in bladder cancer.Front Cell Dev Biol. 2021; 9657219https://doi.org/10.3389/fcell.2021.657219
- ARHGAP24 inhibits cell proliferation and cell cycle progression and induces apoptosis of lung cancer via a STAT6-WWP2-p27 axis.Carcinogenesis. 2020; 41: 711-721https://doi.org/10.1093/carcin/bgz144
- Rho GTPase activating protein 24 (ARHGAP24) silencing promotes lung cancer cell migration and invasion by activating β-catenin signaling.Med Sci Monit: Int Med J Exper Clin Res. 2019; 25: 21-31https://doi.org/10.12659/msm.911503
- FilGAP, a GAP protein for Rac, regulates front-rear polarity and tumor cell migration through the ECM.Faseb j. 2021; 35: e21508https://doi.org/10.1096/fj.202002155R
- Rho GTPase activating protein 24 (ARHGAP24) regulates the anti-cancer activity of sorafenib against breast cancer MDA-MB-231 cells via the signal transducer and activator of transcription 3 (STAT3) signaling pathway.Med Sci Monit. 2018; 24: 8669-8677https://doi.org/10.12659/msm.911394
- ARHGAP24 regulates cell ability and apoptosis of colorectal cancer cells via the regulation of P53.Oncol Lett. 2018; 16: 3517-3524https://doi.org/10.3892/ol.2018.9075
- MicroRNA-590-5p regulates cell viability, apoptosis, migration and invasion of renal cell carcinoma cell lines through targeting ARHGAP24.Mol Biosyst. 2017; 13: 2564-2573https://doi.org/10.1039/c7mb00406k
- Targeting B-cell non Hodgkin lymphoma: new and old tricks.Leuk Res. 2016; 42: 93-104https://doi.org/10.1016/j.leukres.2015.11.001
- Biology of splenic and nodal marginal zone lymphomas.Ann Lymphoma. 2021; 5
- Spontaneous regression of chronic lymphocytic leukemia: clinical and biologic features of 9 cases.Blood. 2009; 114: 638-646https://doi.org/10.1182/blood-2008-12-196568
- Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL.Blood. 2020; 135: 411-428https://doi.org/10.1182/blood.2019001262
- [Identification of fusion transcripts in leukеmic cells by whole-transcriptome sequencing].Mol Biol (Mosk). 2018; 52: 231-237https://doi.org/10.7868/s0026898418020064