Advertisement
Research Article| Volume 272, P23-28, April 2023

Download started.

Ok

Novel high–risk acute myeloid leukemia subgroup with ERG amplification and Biallelic loss of TP53

      Highlights

      • ERGamp is a unique driver of myeloid malignancy with a signature genetic profile with loss of 5q, chromothripsis and TP53 loss of function variants.
      • Chromosome structure with copy number analysis (CNA) and loss of heterozygosity (LOH) should be standard of care to risk stratify myeloid malignancies.

      Abstract

      ETS-related gene (ERG) amplification, observed in 4–6% of acute myeloid leukemia (AML), is associated with unfavorable prognosis. To determine coincident effects of additional genomic abnormalities in AML with ERG amplification (ERGamp), we examined 11 ERGamp cases of 205 newly diagnosed AML using chromosomal microarray analysis and next generation sequencing. ERGamp cases demonstrated a distinct pattern of high genetic complexity: loss of 5q, chromothripsis and TP53 loss of function variants. Remarkably, allelic TP53 loss or loss of heterozygosity (LOH) co-occurring with TP53 inactivating mutation dramatically effected ERGamp tumor patient outcome. In the presence of homozygous TP53 loss of function, ERGamp patients demonstrated no response to induction chemotherapy with median overall survival (OS) of 3.8 months (N = 9). Two patients with heterozygous loss of TP53 function underwent alloSCT without evidence of relapse at one year. Similarly, a validation TCGA cohort, 6 of the 8 ERGamp cases with TP53 loss of function demonstrated median OS of 2.5 months. This suggests that with TP53 mutant ERGamp AML, successive loss of the second TP53 allele, typically by 17p deletion or LOH identifies a specific high-risk subtype of AML patients who are resistant to standard induction chemotherapy and need novel approaches to avert the very poor prognosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Arber D.A., Brunning R.D., Le Beau M.M., Falini B., Vardiman J.W., Porwit A., et al. Acute Myeloid leukeaemia with recurrent genetic abnormalities. In: WHO classification of tumours of haematopoietic and lymphoid tissue. revised 4th edition. 2017, p. 129–71.

        • Taoudi S.
        • Bee T.
        • Hilton A.
        • Knezevic K.
        • Scott J.
        • Willson T.A.
        • et al.
        ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification.
        Genes Dev. 2011; 25: 251-262
        • Ng A.P.
        • Loughran S.J.
        • Metcalf D.
        • Hyland C.D.
        • de Graaf C.A.
        • Hu Y.
        • et al.
        Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice.
        Blood. 2011; 118: 2454-2461
        • Baldus C.D.
        • Liyanarachchi S.
        • Mrózek K.
        • Auer H.
        • Tanner S.M.
        • Guimond M.
        • et al.
        Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: amplification discloses overexpression of APP, ETS2, and ERG genes.
        Proc Natl Acad Sci U S A. 2004; 101: 3915-3920
        • Mrózek K.
        • Heinonen K.
        • Theil K.S.
        • Bloomfield C.D.
        Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q.
        Genes Chromosomes Cancer. 2002; 34: 137-153
        • Marcucci G.
        • Baldus C.D.
        • Ruppert A.S.
        • Radmacher M.D.
        • Mrózek K.
        • Whitman S.P.
        • et al.
        Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study.
        J Clin Oncol. 2005; 23: 9234-9242
        • Mochmann L.H.
        • Neumann M.
        • von der Heide E.K.
        • Nowak V.
        • Kühl A.A.
        • Ortiz-Tanchez J.
        • et al.
        ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells.
        Oncotarget. 2014; 5: 351-362
        • Nibourel O.
        • Guihard S.
        • Roumier C.
        • Pottier N.
        • Terre C.
        • Paquet A.
        • et al.
        Copy-number analysis identified new prognostic marker in acute myeloid leukemia.
        Leukemia. 2017; 31: 555-564
        • Rücker F.G.
        • Schlenk R.F.
        • Bullinger L.
        • Kayser S.
        • Teleanu V.
        • Kett H.
        • et al.
        TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome.
        Blood. 2012; 119: 2114-2121
        • Kadia T.M.
        • Jain P.
        • Ravandi F.
        • Garcia-Manero G.
        • Andreef M.
        • Takahashi K.
        • et al.
        TP53 mutations in newly diagnosed acute myeloid leukemia: clinicomolecular characteristics, response to therapy, and outcomes.
        Cancer. 2016; 122: 3484-3491
        • Wen X.-M.
        • Xu Z.-J.
        • Jin Y.
        • Xia P.-H.
        • Ma J.-C.
        • Qian W.
        • et al.
        Association analyses of TP53 mutation with prognosis, tumor mutational burden, and immunological features in acute myeloid leukemia.
        Front Immunol. 2021; 12717527
        • Döhner H.
        • Estey E.
        • Grimwade D.
        • Amadori S.
        • Appelbaum F.R.
        • Büchner T.
        • et al.
        Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.
        Blood. 2017; 129: 424-447
      2. NCCN Guidelines Version 3.2020 Acute Myeloid Leukemia (Age >/= 18 years), www.nccn.org. In.

        • Sallman D.A.
        • Komrokji R.
        • Vaupel C.
        • Cluzeau T.
        • Geyer S.M.
        • McGraw K.L.
        • et al.
        Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes.
        Leukemia. 2016; 30: 666-673
        • Montalban-Bravo G.
        • Kanagal-Shamanna R.
        • Benton C.B.
        • Class C.A.
        • Chien K.S.
        • Sasaki K.
        • et al.
        Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes.
        Blood Adv. 2020; 4: 482-495
        • Bernard E.
        • Nannya Y.
        • Hasserjian R.P.
        • Devlin S.M.
        • Tuechler H.
        • Medina-Martinez J.S.
        • et al.
        Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes.
        Nat Med. 2020; 26: 1549-1556
        • Short N.J.
        • Montalban-Bravo G.
        • Hwang H.
        • Ning J.
        • Franquiz M.J.
        • Kanagal-Shamanna R.
        • et al.
        Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia.
        Blood Adv. 2020; 4: 5681-5689
        • Park D.J.
        • Kwon A.
        • Cho B.-S.
        • Kim H.-J.
        • Hwang K.-A.
        • Kim M.
        • et al.
        Characteristics of DNMT3A mutations in acute myeloid leukemia.
        Blood Res. 2020; 55: 17-26
        • Lin M.-E.
        • Hou H.-A.
        • Tsai C.-H.
        • Wu S.-J.
        • Kuo Y.-Y.
        • Tseng M.-H.
        • et al.
        Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome.
        Clin Epigenetics. 2018; 10: 42
        • Walter M.J.
        • Ding L.
        • Shen D.
        • Shao J.
        • Grillot M.
        • McLellan M.
        • et al.
        Recurrent DNMT3A mutations in patients with myelodysplastic syndromes.
        Leukemia. 2011; 25: 1153-1158
        • Heuser M.
        • Thol F.
        • Ganser A.
        Clonal hematopoiesis of indeterminate potential.
        Dtsch Arztebl Int. 2016; 113: 317-322
        • Christiansen D.H.
        • Desta F.
        • Andersen M.K.
        • Pedersen-Bjergaard J.
        Mutations of the PTPN11 gene in therapy-related MDS and AML with rare balanced chromosome translocations.
        Genes Chromosomes Cancer. 2007; 46: 517-521
        • Kaner J.D.
        • Mencia-Trinchant N.
        • Schaap A.
        • Roboz G.J.
        • Lee S.
        • Desai P.
        • et al.
        Acute myeloid leukemia (AML) with somatic mutations in PTPN11 is associated with treatment resistance and poor overall survival.
        Blood. 2018; 132 (2760–2760)
        • Tsai C.-H.
        • Hou H.-A.
        • Tang J.-L.
        • Liu C.-Y.
        • Lin C.-C.
        • Chou W.-C.
        • et al.
        Genetic alterations and their clinical implications in older patients with acute myeloid leukemia.
        Leukemia. 2016; 30: 1485-1492
        • Rausch T.
        • Jones D.T.W.
        • Zapatka M.
        • Stütz A.M.
        • Zichner T.
        • Weischenfeldt J.
        • et al.
        Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations.
        Cell. 2012; 148: 59-71
        • Bochtler T.
        • Granzow M.
        • Stölzel F.
        • Kunz C.
        • Mohr B.
        • Kartal-Kaess M.
        • et al.
        Marker chromosomes can arise from chromothripsis and predict adverse prognosis in acute myeloid leukemia.
        Blood. 2017; 129: 1333-1342
        • Fontana M.C.
        • Marconi G.
        • Feenstra J.D.M.
        • Fonzi E.
        • Papayannidis C.
        • Ghelli Luserna di Rorá A.
        • et al.
        Chromothripsis in acute myeloid leukemia: biological features and impact on survival.
        Leukemia. 2018; 32: 1609-1620
        • Bally C.
        • Adès L.
        • Renneville A.
        • Sebert M.
        • Eclache V.
        • Preudhomme C.
        • et al.
        Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine.
        Leuk Res. 2014; 38: 751-755
        • Middeke J.M.
        • Herold S.
        • Rücker-Braun E.
        • Berdel W.E.
        • Stelljes M.
        • Kaufmann M.
        • et al.
        TP53 mutation in patients with high-risk acute myeloid leukaemia treated with allogeneic haematopoietic stem cell transplantation.
        Br J Haematol. 2016; 172: 914-922
        • Takahashi K.
        • Patel K.
        • Bueso-Ramos C.
        • Zhang J.
        • Gumbs C.
        • Jabbour E.
        • et al.
        Clinical implications of TP53 mutations in myelodysplastic syndromes treated with hypomethylating agents.
        Oncotarget. 2016; 7: 14172-14187
        • DiNardo C.D.
        • Tiong I.S.
        • Quaglieri A.
        • MacRaild S.
        • Loghavi S.
        • Brown F.C.
        • et al.
        Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML.
        Blood. 2020; 135: 791-803
        • Welch J.S.
        • Petti A.A.
        • Miller C.A.
        • Fronick C.C.
        • O'Laughlin M.
        • Fulton R.S.
        • et al.
        TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes.
        N Engl J Med. 2016; 375: 2023-2036
        • Becker H.
        • Pfeifer D.
        • Ihorst G.
        • Pantic M.
        • Wehrle J.
        • Rüter B.H.
        • et al.
        Monosomal karyotype and chromosome 17p loss or TP53 mutations in decitabine-treated patients with acute myeloid leukemia.
        Ann Hematol. 2020; 99: 1551-1560
        • Aldoss I.
        • Zhang J.
        • Pillai R.
        • Shouse G.
        • Sanchez J.F.
        • Mei M.
        • et al.
        Venetoclax and hypomethylating agents in TP53-mutated acute myeloid leukaemia.
        Br J Haematol. 2019; 187: e45-e48
        • Lee W.
        • Gutierrez-Lanz E.A.
        • Xiao H.
        • McClintock D.
        • Chan M.P.
        • Shao L.
        • et al.
        ERG amplification is a secondary recurrent driver event in myeloid malignancy with complex karyotype and TP53 mutations.
        Gen Chrom Cancer. 2022; (online)
        • Ibáñez M.
        • Such E.
        • Onecha E.
        • Gómez-Seguí I.
        • Liquori A.
        • Sellés J.
        • et al.
        Analysis of SNP array abnormalities in patients with DE NOVO acute myeloid leukemia with normal karyotype.
        Sci Rep. 2020; 10: 5904
        • Kanagal-Shamanna R.
        • Hodge J.C.
        • Tucker T.
        • Shetty S.
        • Yenamandra A.
        • Dixon-McIver A.
        • et al.
        Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: an evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms.
        Cancer Genet. 2018; (197–217): 228-229
        • Walter M.J.
        • Payton J.E.
        • Ries R.E.
        • Shannon W.D.
        • Deshmukh H.
        • Zhao Y.
        • et al.
        Acquired copy number alterations in adult acute myeloid leukemia genomes.
        Proc Natl Acad Sci U S A. 2009; 106: 12950-12955