Case Report| Volume 272, P41-46, April 2023

Download started.


Unexpected appearance of KMT2A::MLLT10 fusion transcript in acute myeloid leukemia with t(5;11)(q31;q23.3)


      As an uncommon but nonrandom translocation in acute myeloid leukemia (AML) t(5;11)(q31;q23) results in fusion between KMT2A at 11q23 and ARHGAP26 at 5q31. The 5q31 region has another KMT2A partner, AFF4, which was identified in acute lymphoblastic leukemia harboring ins(5;11)(q31;q13q23). We report here a 65-year-old woman with AML M5b. G-banding and spectral karyotyping demonstrated 46,XX,t(5;11)(q31;q23.3). Fluorescence in situ hybridization revealed not only separated 5′ and 3′ KMT2A signals but a faint 5′ KMT2A signal. Reverse transcription polymerase chain reaction (RT–PCR), using a KMT2A sense primer and ARHGAP26 antisense primer, detected no band whereas RT–PCR with a AFF4 antisense primer revealed an amplified band. However, sequence analysis unexpectedly disclosed that KMT2A exon 6 was connected with MLLT10 exons 15 to 18. This may be due to cross-hybridization between MLLT10 exon 18 and AFF4 antisense primer derived from AFF4 exon 10 since both exons had eight identical bases (AAGCAGCT). The MLLT10 gene is located at 10p12.31; a faint 5′ KMT2A signal was probably present at this locus. These findings indicate that in AML the 5′ KMT2A fragment containing exons 1 to 6 may be cryptically inserted into MLLT10 intron 14 when a reciprocal translocation t(5;11)(q31;q23.3) involving KMT2A occurred.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Marschalek R.
        Mechanisms of leukemogenesis by MLL fusion proteins.
        Br J Haematol. 2011; 152: 141-154
        • Meyer C.
        • Bumeister T.
        • Gröger D.
        • Tsaur G.
        • Fechina L.
        • Renneville A.
        • et al.
        The MLL recombinome of acute leukemias in 2017.
        Leukemia. 2018; 32: 273-284
      1. Mitelman F Johansson B Mertens F Mitelman database of chromosome aberrations and gene fusions in cancer. 2022 (accessed July 15, 2022)
        • Borkhardt A.
        • Bojesen S.
        • Haas O.A.
        • Fuchs U.
        • Bartelheimer D.
        • Loncarevic I.F.
        • et al.
        The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q.
        Proc Natl Acad Sci USA. 2000; 97: 9168-9173
        • Panagopoulos I.
        • Kitagawa A.
        • Isaksson M.
        • Mörse H.
        • Mitelman F.
        • Johansson B.
        MLL/GRAF fusion in an infant acute monocytic leukemia (AML M5b) with a cytogenetically cryptic ins(5;11)(q31;q23q23).
        Genes Chromosomes Cancer. 2004; 41: 400-404
        • Wilda M.
        • Perez A.V.
        • Bruch J.
        • Woessnann W.
        • Metzler M.
        • Fuchs U.
        • et al.
        Use of MLL/GRAF fusion mRNA for measurement of minimal residual disease during chemotherapy in an infant with acute monoblastic leukemia (AML-M5).
        Genes Chromosomes Cancer. 2005; 43: 424-426
        • Taki T.
        • Kano H.
        • Taniwaki M.
        • Sako M.
        • Yanagisawa M.
        • Hayashi Y.
        AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23).
        Proc Natl Acad Sci USA. 1999; 96: 14535-14540
        • Imamura T.
        • Morimoto A.
        • Ikushima S.
        • Kakazu N.
        • Hada S.
        • Tabata Y.
        • et al.
        A novel infant acute lymphoblastic leukemia cell line with MLL-AF5q31 fusion transcript.
        Leukemia. 2002; 16: 2302-2308
        • Deveney R.
        • Chervinsky D.S.
        • SN Jani-Sait
        • Grossi M.
        • Aplan P.D.
        Insertion of MLL sequences into chromosome band 5q31 results in an MLL-AF5q31 fusion and is a rare but recurrent abnormality associated with infant leukemia.
        Genes Chromosomes Cancer. 2003; 37: 326-331
        • Chaplin T.
        • Bernard O.
        • Beverloo H.B.
        • Saha V.
        • Hagemeijer A.
        • Berger R.
        • et al.
        The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene.
        Blood. 1995; 86: 2073-2076
        • Van Limbergen H.
        • Poppe B.
        • Janssens A.
        • De Bock R.
        • De Paepe A.
        • Noens L.
        • et al.
        Molecular cytogenetic analysis of 10;11 rearrangements in acute myeloid leukemia.
        Leukemia. 2002; 16: 344-351
        • Peterson J.F.
        • Sukov W.R.
        • Pitel B.A.
        • Smoley S.A.
        • Pearce K.E.
        • Meyer R.G.
        • et al.
        Acute leukemias harboring KMT2A/MLLT10 fusion: a 10-year experience from a single genomics laboratory.
        Genes Chromosomes Cancer. 2019; 58: 567-577
        • Morerio C.
        • Rapella A.
        • Rosanda C.
        • Lanino E.
        • Lo Nigro L.
        • Di Cataldo A.
        • et al.
        MLL-MLLT10 fusion in acute monoblastic leukemia: variant complex rearrangements and 11q proximal heterogeneity.
        Cancer Genet Cytogenet. 2004; 152: 108-112
        • Christiansen L.
        • Allen R.A.
        • Dunn S.T.
        • Wolff D.J.
        A case of infantile acute myelogenous leukemia with MLL-MLLT10 fusion caused by insertion of 11q into 10p.
        Cancer Genet Cytogenet. 2005; 159: 181-183
        • Jarosova M.
        • Takacova S.
        • Holzerova M.
        • Priwitzerova M.
        • Divoka M.
        • Lakoma I.
        • et al.
        Cryptic MLL-AF10 fusion caused by insertion of duplicated 5’ part of MLL into 10p12 in acute leukemia: a case report.
        Cancer Genet Cytogenet. 2005; 162: 179-182
        • Matsuda K.
        • Hidaka E.
        • Ishida F.
        • Yamauchi K.
        • Makishima H.
        • Ito T.
        • et al.
        A case of acute myelogenous leukemia with MLL-AF10 fusion caused by insertion of 5’ MLL into 10p12, with concurrent 3’ MLL deletion.
        Cancer Genet Cytogenet. 2006; 171: 24-30
        • Zerkalenkova E.
        • Lebedeva S.
        • Kazakova A.
        • Tsaur G.
        • Starichkova Y.
        • Timofeeva N.
        • et al.
        Acute myeloid leukemia with t(10;11)(p11-12;q23.3): results of Russian pediatric AML registration study.
        Int J Lab Hematol. 2019; 41: 287-292
        • Meyer C.
        • Lopes B.A.
        • Caye-Eude A.
        • Cavé H.
        • Arfeuille C.
        • Cuccuini W.
        • et al.
        Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions.
        Leukemia. 2019; 33: 2306-2310
        • Klaus M.
        • Schnittger S.
        • Haferlach T.
        • Dreyling M.
        • Hiddemann W.
        • Schoch C.
        Cytogenetics, fluorescence in situ hybridization, and reverse transcriptase polymerase chain reaction are necessary to clarify the various mechanisms leading to an MLL-AF10 fusion in acute myelocytic leukemia with 10;11 rearrangement.
        Cancer Genet Cytogenet. 2003; 144: 36-43
        • Yokoyama A.
        Transcriptional activation by MLL fusion proteins in leukemogenesis.
        Exp Hematol. 2017; 46: 21-30
        • Bursen A.
        • Schwabe K.
        • Rüster B.
        • Henschler R.
        • Ruthardt M.
        • Dingermann T.
        • et al.
        The AF4·MLL fusion protein is capable of inducing ALL in mice without requirement of MLL·AF4.
        Blood. 2010; 115: 3570-3579