Advertisement
Original Article| Volume 274, P10-20, June 2023

Download started.

Ok

Integrated genetic profiling of archival pediatric high-grade glial tumors and reassessment with 2021 WHO classification of paediatric CNS tumours

  • Author Footnotes
    1 Co-first authors
    Linda D Cooley
    Correspondence
    Corresponding authors at: Children's Mercy – Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA.
    Footnotes
    1 Co-first authors
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA

    University of Missouri - Kansas City, School of Medicine, Kansas City, MO, USA
    Search for articles by this author
  • Author Footnotes
    1 Co-first authors
    Lisa A Lansdon
    Footnotes
    1 Co-first authors
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA

    University of Missouri - Kansas City, School of Medicine, Kansas City, MO, USA

    Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
    Search for articles by this author
  • Kris Laurence
    Affiliations
    Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Mercy - Kansas City, Kansas City, MO, USA
    Search for articles by this author
  • John C Herriges
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA

    University of Missouri - Kansas City, School of Medicine, Kansas City, MO, USA
    Search for articles by this author
  • Lei Zhang
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA

    University of Missouri - Kansas City, School of Medicine, Kansas City, MO, USA
    Search for articles by this author
  • Elena A Repnikova
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA

    University of Missouri - Kansas City, School of Medicine, Kansas City, MO, USA
    Search for articles by this author
  • Julie Joyce
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA
    Search for articles by this author
  • Preeti Thakor
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA
    Search for articles by this author
  • Lisa Warren
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA
    Search for articles by this author
  • Scott C Smith
    Affiliations
    Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
    Search for articles by this author
  • Byunggil Yoo
    Affiliations
    Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
    Search for articles by this author
  • Melissa Gener
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA

    University of Missouri - Kansas City, School of Medicine, Kansas City, MO, USA
    Search for articles by this author
  • Kevin F Ginn
    Affiliations
    University of Missouri - Kansas City, School of Medicine, Kansas City, MO, USA

    Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Mercy - Kansas City, Kansas City, MO, USA
    Search for articles by this author
  • Midhat S Farooqi
    Correspondence
    Corresponding authors at: Children's Mercy – Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA.
    Affiliations
    Department of Pathology and Laboratory Medicine, Children's Mercy - Kansas City, Kansas City, MO, USA

    University of Missouri - Kansas City, School of Medicine, Kansas City, MO, USA

    Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO, USA
    Search for articles by this author
  • Author Footnotes
    1 Co-first authors

      Highlights

      • The study of archival pediatric HGG samples provided valuable insights, including novel genetic features and subtypes, in this rare tumor type.
      • The use of gold standard karyotyping combined with array and sequencing in a lab without methylation array allowed for reclassification of all tumors.
      • The use of the 2021 WHO classification of CNS tumors refined each integrated tumor diagnosis.

      Abstract

      Though rare, pediatric high-grade gliomas (pHGG) are a leading cause of cancer-related mortality in children. We wanted to determine whether our currently available clinical laboratory methods could better define diagnosis for pHGG that had been archived at our institution for the past 20 years (1998 to 2017). We investigated 33 formalin-fixed paraffin-embedded pHGG using ThermoFisher Oncoscan SNP microarray with somatic mutation analysis, Sanger sequencing, and whole genome sequencing. These data were correlated with historical histopathological, chromosomal, clinical, and radiological data. Tumors were subsequently classified according to the 2021 WHO Classification of Paediatric CNS Tumours. All 33 tumors were found to have genetic aberrations that placed them within a 2021 WHO subtype and/or provided prognostic information; 6 tumors were upgraded from WHO CNS grade 3 to grade 4. New pHGG genetic features were found including two small cell glioblastomas with H3 G34 mutations not previously described; one tumor with STRN-NTRK2 fusion; and a congenital diffuse leptomeningeal glioneuronal tumor without a chromosomal 1p deletion but with KIAA1549-BRAF fusion. Overall, the combination of laboratory methods yielded key information for tumor classification. Thus, even small studies of these uncommon tumor types may yield new genetic features and possible new subtypes that warrant future investigations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aguilera D.
        • Castellino R.C.
        • Janss A.
        • Schniederjan M.
        • McNall R.
        • MacDonald T.
        • et al.
        Clinical responses of patients with diffuse leptomeningeal glioneuronal tumors to chemotherapy.
        Child’s Nerv Syst. 2018; 34 (: ChNS: official journal of the International Society for Pediatric Neurosurgery): 329-334https://doi.org/10.1007/s00381-017-3584-x
        • Appay R.
        • Pages M.
        • Colin C.
        • Jones D.T.W.
        • Varlet P.
        • Figarella-Branger D.
        Diffuse leptomeningeal glioneuronal tumor: a double misnomer? A report of two cases.
        Acta Neuropathol Commun. 2020; 8: 95https://doi.org/10.1186/s40478-020-00978-7
        • Baker T.G.
        • Alden J.
        • Dubuc A.M.
        • Welsh C.T.
        • Znoyko I.
        • Cooley L.D.
        Near haploidization is a genomic hallmark which defines a molecular subgroup of giant cell glioblastoma.
        Neurooncol Adv. 2020; 2: vdaa155https://doi.org/10.1093/noajnl/vdaa155
        • Bax D.A.
        • Mackay A.
        • Little S.E.
        • Carvalho D.
        • Viana-Pereira M.
        • Tamber N.
        A distinct spectrum of copy number aberrations in pediatric high-grade gliomas.
        Clin Cancer Res. 2010; 16: 3368-3377https://doi.org/10.1158/1078-0432.CCR-10-0438
        • Bourne T.D.
        • Mandell J.W.
        • Matsumoto J.A.
        • Jane JrJA
        • Lopes M.B.
        Primary disseminated leptomeningeal oligodendroglioma with 1p deletion.
        Case Rep Neurosurg. 2006; 105: 465-469https://doi.org/10.3171/ped.2006.105.6.465
        • Bozkurt S.U.
        • Dagcinar A.
        • Tanrikulu B.
        • Comunoglu N.
        • Meydan B.C.
        • Ozek M.
        • Oz B.
        Significance of H3K27M mutation with specific histomorphological features and associated molecular alterations in pediatric high-grade glial tumors.
        Child's Nerv Syst. 2018; 34: 107-116https://doi.org/10.1007/s00381-017-3633-5
        • Burford A.
        • Little S.E.
        • Jury A.
        • Popov S.
        • Laxton R.
        • Doey L.
        • Al-Sarraj S.
        • Jurgensmeier J.M.
        • Jones C.
        Distinct phenotypic differences associated with differential amplification of receptor tyrosine kinase genes at 4q12 in glioblastoma.
        PLoS One. 2013; 8: e71777https://doi.org/10.1371/journal.pone.0071777
        • Busse T.M.
        • Roth J.J.
        • Wilmoth D.
        • Wainwright L.
        • Tooke L.
        • Biegel J.A.
        Copy number alterations determined by single nucleotide polymorphism array testing in the clinical laboratory are indicative of gene fusions in pediatric cancer patients.
        Genes Chromosom Cancer. 2017; 56: 730-749https://doi.org/10.1002/gcc.22477
        • Capper D.
        • Stichel D.
        • Sahm F.
        • Jones D.T.W.
        • Schrimpf D.
        • Sill M.
        Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience.
        Acta Neuropathol. 2018; 136: 181-210https://doi.org/10.1007/s00401-018-1879-y
        • Cohen A.
        • Sato M.
        • Aldape K.
        • Mason C.C.
        • Alfaro-Munoz K.
        • Heathcock L.
        • South S.T.
        • Abegglen L.M.
        • Schiffman J.D.
        • Colman H.
        DNA copy number analysis of Grade II-III and Grade IV gliomas reveals differences in molecular ontogeny including chromothripsis associated with IDH mutation status.
        Acta Neuropathol Commun. 2015; 3: 34https://doi.org/10.1186/s40478-015-0213-3
        • Deng M.Y.
        • Sill M.
        • Chiang J.
        • Schittenhelm J.
        • Ebinger M.
        • Schuhmann M.U.
        Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features.
        Acta Neuropathol. 2018; 136: 239-253https://doi.org/10.1007/s00401-018-1865-4
        • Deng M.Y.
        • Sturm D.
        • Pfaff E.
        • Sill M.
        • Stichel D.
        • Balasubramanian G.P.
        Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B.
        Nat Commun. 2021; 12: 5530https://doi.org/10.1038/s41467-021-25708-y
        • Fontebasso A.M.
        • Schwartzentruber J.
        • Khuong-Quang D.A.
        • Liu X.Y.
        • Sturm D.
        • Korshunov A.
        Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas.
        Acta Neuropathol. 2013; 125: 659-669https://doi.org/10.1007/s00401-013-1095-8
        • Gambella A.
        • Senetta R.
        • Collemi G.
        • Vallero S.G.
        • Monticelli M.
        • Cofano F.
        NTRK fusions in central nervous system tumors: a rare, but worthy target.
        Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21030753
        • Gatalica Z.X.J.
        • Swensen J.
        • Vranic S.
        Molecular characterization of cancers with NTRK gene fusions.
        Mod Pathol. 2019; 32: 147-153https://doi.org/10.1038/s41379-018-0118-3
        • Gerges N.
        • Fontebasso A.M.
        • Albrecht S.
        • Faury D.
        • N J.
        Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm.
        Genome Med. 2013; 5https://doi.org/10.1186/gm470
        • Gielen G.H.
        • Gessi M.
        • Buttarelli F.R.
        • Baldi C.
        • Hammes J.
        • zur Muehlen A.
        Genetic analysis of diffuse high-grade astrocytomas in infancy defines a novel molecular entity.
        Brain Pathol. 2015; 25: 409-417https://doi.org/10.1111/bpa.12210
        • Khuong-Quang D.A.
        • Buczkowicz P.
        • Rakopoulos P.
        • Liu X.Y.
        • Fontebasso A.M.
        • Bouffet E.
        K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas.
        Acta Neuropathol. 2012; 124: 439-447https://doi.org/10.1007/s00401-012-0998-0
        • Kim N.
        • Cho D.
        • Kim H.
        • Kim S.
        • Cha Y.J.
        • Greulich H.
        • Bass A.
        • Cho H.S.
        • Cho J.
        Colorectal adenocarcinoma-derived EGFR mutants are oncogenic and sensitive to EGFR-targeted monoclonal antibodies, cetuximab and panitumumab.
        Int J Cancer. 2020; 146: 2194-2200https://doi.org/10.1002/ijc.32499
        • Lahiri D.K.
        • Schnabel B.
        DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality.
        Biochem Genet. 1993; 31https://doi.org/10.1007/BF02401826
        • Li M.M.
        • Datto M.
        • Duncavage E.J.
        • Kulkarni S.
        • Lindeman N.I.
        • Roy S.
        Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American society of clinical oncology, and college of American pathologists.
        J Mol Diagn. 2017; 19: 4-23https://doi.org/10.1016/j.jmoldx.2016.10.002
        • Mackay A.
        • Burford A.
        • Carvalho D.
        • Izquierdo E.
        • Fazal-Salom J.
        • Taylor K.R.
        Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma.
        Cancer Cell. 2017; 32 (e525): 520-537https://doi.org/10.1016/j.ccell.2017.08.017
        • Okamura R.
        • Boichard A.
        • Kato S.
        • Sicklick J.K.
        • Bazhenova L.
        • Kurzrock R.
        Analysis of NTRK Alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics.
        JCO Precis Oncol. 2018; https://doi.org/10.1200/PO.18.00183
        • Ostrom Q.T.
        • Gittleman H.
        • Fulop J.
        • Liu M.
        • Blanda R.
        • Kromer C.
        • Wolinsky Y.
        • Kruchko C.
        • Barnholtz-Sloan J.S.
        CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012.
        Neuro-oncology. 2015; 17: iv1-iv62https://doi.org/10.1093/neuonc/nov189
        • Paugh B.S.
        • Qu C.
        • Jones C.
        • Liu Z.
        • Adamowicz-Brice M.
        • Zhang J.
        Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease.
        J Clin Oncol. 2010; 28: 3061-3068https://doi.org/10.1200/JCO.2009.26.7252
        • Pollack I.F.
        • Hamilton R.L.
        • Sobol R.W.
        • Nikiforova M.N.
        • Lyons-Weiler M.A.
        • LaFramboise W.A.
        IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children's Oncology Group.
        Child's Nerv. Syst. 2011; 27 (: ChNS: official journal of the International Society for Pediatric Neurosurgery): 87-94https://doi.org/10.1007/s00381-010-1264-1
        • Rodriguez F.J.
        • Perry A.
        • Rosenblum M.K.
        • Krawitz S.
        • Cohen K.J.
        • Lin D.
        • Mosier S.
        • Lin M.T.
        • Eberhart C.G.
        • Burger P.C.
        Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity.
        Acta Neuropathol. 2012; 124: 627-641https://doi.org/10.1007/s00401-012-1037-x
        • Rodriguez F.J.
        • Schniederjan M.J.
        • Nicolaides T.
        • Tihan T.
        • Burger P.C.
        • Perry A.
        High rate of concurrent BRAF-KIAA1549 gene fusion and 1p deletion in disseminated oligodendroglioma-like leptomeningeal neoplasms (DOLN).
        Acta Neuropathol. 2015; 129: 609-610https://doi.org/10.1007/s00401-015-1400-9
        • Roth J.J.
        • Santi M.
        • Rorke-Adams L.B.
        • Harding B.N.
        • Busse T.M.
        • Tooke L.S.
        • Biegel J.A.
        Diagnostic application of high resolution single nucleotide polymorphism array analysis for children with brain tumors.
        Cancer Genet. 2014; 207: 111-123https://doi.org/10.1016/j.cancergen.2014.03.002
        • Roux A.
        • Pallud J.
        • Saffroy R.
        • Edjlali-Goujon M.
        • Debily M.A.
        • Boddaert N.
        High-grade gliomas in adolescents and young adults highlight histomolecular differences from their adult and pediatric counterparts.
        Neuro-Oncology. 2020; 22: 1190-1202https://doi.org/10.1093/neuonc/noaa024
        • Siegel D.A.
        • Richardson L.C.
        • Henley S.J.
        • Wilson R.J.
        • Dowling N.F.
        • Weir H.K.
        • Tai E.W.
        • Buchanan Lunsford N.
        Pediatric cancer mortality and survival in the United States, 2001-2016.
        Cancer. 2020; 126: 4379-4389https://doi.org/10.1002/cncr.33080
        • Siegel R.L.
        • Miller K.D.
        • Fuchs H.E.
        • Jemal A.
        Cancer statistics, 2022.
        CA Cancer J Clin. 2022; 72: 7-33https://doi.org/10.3322/caac.21708
        • Smith S.C.
        • Farooqi M.S.
        • Gener M.A.
        • Ginn K.
        • Joyce J.M.
        • Bendorf T.M.
        • Cooley L.D.
        Clinical validation of somatic mutation detection by the OncoScan CNV plus assay.
        J Mol Diagn. 2021; 23: 29-37https://doi.org/10.1016/j.jmoldx.2020.10.001
        • Torre M.
        • Vasudevaraja V.
        • Serrano J.
        • DeLorenzo M.
        • Malinowski S.
        • Blandin A.F.
        Molecular and clinicopathologic features of gliomas harboring NTRK fusions.
        Acta Neuropathol Commun. 2020; 8: 107https://doi.org/10.1186/s40478-020-00980-z
        • Vanan M.I.
        • Eisenstat D.D.
        Management of high-grade gliomas in the pediatric patient: past, present, and future.
        Neurooncol Pract. 2014; 1: 145-157https://doi.org/10.1093/nop/npu022
        • Viaene A.N.
        • Santi M.
        • Rosenbaum J.
        • Li M.M.
        • Surrey L.F.
        • Nasrallah M.P.
        SETD2 mutations in primary central nervous system tumors.
        Acta Neuropathol Commun. 2018; 6: 123https://doi.org/10.1186/s40478-018-0623-0
      1. Wesseling P. (2023) CNS tumours. In: WHO classification of tumours editorial board pediatric tumours. Lyon (France): International agency for research on cancer; [cited 2022 Sep 23]. (WHO classification of tumours series, 5th ed; vol. 7). https://tumourclassification.iarc.who.int/chapters/44.

        • Williams K.
        • Thomson D.
        • Seto I.
        • Contopoulos-Ioannidis D.G.
        • Ioannidis J.P.
        • Curtis S.
        • Constantin E.
        • Batmanabane G.
        • Hartling L.
        • Klassen T.
        Standard 6: age groups for pediatric trials.
        Pediatrics. 2012; 129: S153-S160https://doi.org/10.1542/peds.2012-0055I
        • Wong K.K.
        • Tsang Y.T.
        • Chang Y.M.
        • Su J.
        • Di Francesco A.M.
        • Meco D.
        Genome-wide allelic imbalance analysis of pediatric gliomas by single nucleotide polymorphic allele array.
        Cancer Res. 2006; 66: 11172-11178https://doi.org/10.1158/0008-5472.CAN-06-2438
        • Wood H.M.
        • Foster J.M.
        • Taylor M.
        • Tinkler-Hundal E.
        • Togneri F.S.
        • Wojtowicz P.
        • Oumie A.
        • Spink K.G.
        • Brew F.
        • Quirke P.
        Comparing mutation calls in fixed tumour samples between the affymetrix OncoScan(R) array and PCR based next-generation sequencing.
        BMC Med Genet. 2017; 10: 17https://doi.org/10.1186/s12920-017-0254-5
        • Wu L.W.P.T.
        • Patterson A.
        • Post A.
        • Ambrose C.
        • Rajaram V.
        • Pavlick D.C.
        • Cooke M.
        • Miller V.A.
        • Albacker L.A.
        • Ali S.M.
        • Smith S.
        • Cox M.C.
        • Martin A.
        • Megison S.
        • Laetsch T.W.
        Durable clinical response to larotrectinib in an adolescent patient with an undifferentiated sarcoma harboring an STRN-NTRK2 fusion.
        JCO Precis Oncol. 2018; (2018 Aug 22:PO.18.00101)https://doi.org/10.1200/PO.18.00101
        • Yu J.R.
        • LeRoy G.
        • Bready D.
        • Frenster J.D.
        • Saldaña-Meyer R.
        • Jin Y.
        • Descostes N.
        • Stafford J.M.
        • Placantonakis D.G.
        • Reinberg D.
        The H3K36me2 writer-reader dependency in H3K27M-DIPG.
        Sci Adv. 2021; 7https://doi.org/10.1126/sciadv.abg7444