Advertisement
Research Article| Volume 274, P41-50, June 2023

Download started.

Ok

Epithelial-mesenchymal transition-related gene prognostic index and phenotyping clusters for hepatocellular carcinoma patients

      Highlights

      • An EMT-related genes prognostic index could predict HCC prognosis.
      • The cluster C1 patients responded well to immune checkpoint inhibitors.
      • The cluster C2 patients were sensitive to chemotherapeutic and antiangiogenic agents.

      Abstract

      Epithelial-mesenchymal transition (EMT) contributes to high tumor heterogeneity and the immunosuppressive environment of the HCC tumor microenvironment (TME). Here, we developed EMT-related genes phenotyping clusters and systematically evaluated their impact on HCC prognosis, the TME, and drug efficacy prediction. We identified HCC specific EMT-related genes using weighted gene co-expression network analysis (WGCNA). An EMT-related genes prognostic index (EMT-RGPI) capable of effectively predicting HCC prognosis was then constructed. Consensus clustering of 12 HCC specific EMT-related hub genes uncovered two molecular clusters C1 and C2. Cluster C2 preferentially associated with unfavorable prognosis, higher stemness index (mRNAsi) value, elevated immune checkpoint expression, and immune cell infiltration. The TGF-β signaling, EMT, glycolysis, Wnt β-catenin signaling, and angiogenesis were markedly enriched in cluster C2. Moreover, cluster C2 exhibited higher TP53 and RB1 mutation rates. The TME subtypes and tumor immune dysfunction and exclusion (TIDE) score showed that cluster C1 patients responded well to immune checkpoint inhibitors (ICIs). Half-maximal inhibitory concentration (IC50) revealed that cluster C2 patients were more sensitive to chemotherapeutic and antiangiogenic agents. These findings may guide risk stratification and precision therapy for HCC patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sung H.
        • Ferlay J.
        • Siegel R.L.
        • Laversanne M.
        • Soerjomataram I.
        • Jemal A.
        • et al.
        Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
        CA Cancer J Clin. 2021; 71: 209-249
        • Cao M.D.
        • Wang H.
        • Shi J.F.
        • Bai F.Z.
        • Cao M.M.
        • Wang Y.T.
        • et al.
        Disease burden of liver cancer in China: an updated and integrated analysis on multi-data source evidence.
        Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41: 1848-1858
        • Llovet J.M.
        • Kelley R.K.
        • Villanueva A.
        • Singal A.G.
        • Pikarsky E.
        • Roayaie S.
        • et al.
        Hepatocellular carcinoma.
        Nat Rev Dis Primers. 2021; 7: 6
        • Giannelli G.
        • Koudelkova P.
        • Dituri F.
        • Mikulits W.
        Role of epithelial to mesenchymal transition in hepatocellular carcinoma.
        J Hepatol. 2016; 65: 798-808
        • Erin N.
        • Grahovac J.
        • Brozovic A.
        • Efferth T.
        Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance.
        Drug Resist Updat. 2020; 53100715
        • Pastushenko I.
        • Blanpain C.
        EMT transition states during tumor progression and metastasis.
        Trends Cell Biol. 2019; 29: 212-226
        • Brown M.S.
        • Muller K.E.
        • Pattabiraman D.R.
        Quantifying the Epithelial-to-Mesenchymal Transition (EMT) from Bench to Bedside.
        Cancers (Basel). 2022; 14: 1138
        • Bai Y.
        • Sha J.
        • Okui T.
        • Moriyama I.
        • Ngo H.X.
        • Tatsumi H.
        • et al.
        The epithelial-mesenchymal transition influences the resistance of oral squamous cell carcinoma to monoclonal antibodies via its effect on energy homeostasis and the tumor microenvironment.
        Cancers (Basel). 2021; 13: 5905
        • Wang X.
        • Xing Z.
        • Xu H.
        • Yang H.
        • Xing T.
        Development and validation of epithelial mesenchymal transition-related prognostic model for hepatocellular carcinoma.
        Aging (Albany NY). 2021; 13: 13822-13845
        • Xu B.H.
        • Jiang J.H.
        • Luo T.
        • Jiang Z.J.
        • Liu X.Y.
        • Li L.Q.
        Signature of prognostic epithelial-mesenchymal transition related long noncoding RNAs (ERLs) in hepatocellular carcinoma.
        Medicine (Baltimore). 2021; 100: e26762
        • Xu L.
        • Zheng Q.
        A novel expression signature from the perspective of mesenchymal-epithelial transition for hepatocellular carcinoma with regard to prognosis, clinicopathological features, immune cell infiltration, chemotherapeutic efficacy, and immunosuppressive molecules.
        J Oncol. 2021; 20215033416
        • Malta T.M.
        • Sokolov A.
        • Gentles A.J.
        • Burzykowski T.
        • Poisson L.
        • Weinstein J.N.
        • et al.
        Machine learning identifies stemness features associated with oncogenic dedifferentiation.
        Cell. 2018; 173 (e15): 338-354
        • Zhao M.
        • Liu Y.
        • Zheng C.
        • Qu H.
        dbEMT 2.0: an updated database for epithelial-mesenchymal transition genes with experimentally verified information and precalculated regulation information for cancer metastasis.
        J Genet Genomics. 2019; 46: 595-597
        • Lian Q.
        • Wang S.
        • Zhang G.
        • Wang D.
        • Luo G.
        • Tang J.
        • et al.
        HCCDB: a database of hepatocellular carcinoma expression atlas.
        Genomics Proteomics Bioinformatics. 2018; 16: 269-275
        • Langfelder P.
        • Horvath S.
        WGCNA: an R package for weighted correlation network analysis.
        BMC Bioinformatics. 2008; 9: 559
        • Wu T.
        • Hu E.
        • Xu S.
        • Chen M.
        • Guo P.
        • Dai Z.
        • et al.
        clusterProfiler 4.0: a universal enrichment tool for interpreting omics data.
        Innovation (N Y). 2021; 2100141
        • Liberzon A.
        • Birger C.
        • Thorvaldsdottir H.
        • Ghandi M.
        • Mesirov J.P.
        • Tamayo P.
        The Molecular Signatures Database (MSigDB) hallmark gene set collection.
        Cell Syst. 2015; 1: 417-425
        • Yi L.
        • Wu G.
        • Guo L.
        • Zou X.
        • Huang P.
        Comprehensive Analysis of the PD-L1 and Immune Infiltrates of m(6)A RNA methylation regulators in head and neck squamous cell carcinoma.
        Mol Ther Nucleic Acids. 2020; 21: 299-314
        • Zeng D.
        • Li M.
        • Zhou R.
        • Zhang J.
        • Sun H.
        • Shi M.
        • et al.
        Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures.
        Cancer Immunol Res. 2019; 7: 737-750
        • Fu J.
        • Li K.
        • Zhang W.
        • Wan C.
        • Zhang J.
        • Jiang P.
        • et al.
        Large-scale public data reuse to model immunotherapy response and resistance.
        Genome Med. 2020; 12: 21
        • Bagaev A.
        • Kotlov N.
        • Nomie K.
        • Svekolkin V.
        • Gafurov A.
        • Isaeva O.
        • et al.
        Conserved pan-cancer microenvironment subtypes predict response to immunotherapy.
        Cancer Cell. 2021; 39 (e7): 845-865
        • Yang W.
        • Soares J.
        • Greninger P.
        • Edelman E.J.
        • Lightfoot H.
        • Forbes S.
        • et al.
        Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.
        Nucleic Acids Res. 2013; 41: D955-D961
        • Iorio F.
        • Knijnenburg T.A.
        • Vis D.J.
        • Bignell G.R.
        • Menden M.P.
        • Schubert M.
        • et al.
        A landscape of pharmacogenomic interactions in cancer.
        Cell. 2016; 166: 740-754
        • Geeleher P.
        • Cox N.
        • Huang R.S.
        pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.
        PLoS ONE. 2014; 9e107468
        • Fiori M.E.
        • Di Franco S.
        • Villanova L.
        • Bianca P.
        • Stassi G.
        • De Maria R.
        Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance.
        Mol Cancer. 2019; 18: 70
        • Qiu Z.Q.
        • Wang X.
        • Ji X.W.
        • Jiang F.J.
        • Han X.Y.
        • Zhang W.L.
        • et al.
        The clinical relevance of epithelial-mesenchymal transition and its correlations with tumorigenic immune infiltrates in hepatocellular carcinoma.
        Immunology. 2022; 166: 185-196
        • Deldar Abad Paskeh M.
        • Mirzaei S.
        • Ashrafizadeh M.
        • Zarrabi A.
        • Sethi G.
        Wnt/β-catenin signaling as a driver of hepatocellular carcinoma progression: an emphasis on molecular pathways.
        J Hepatocell Carcinoma. 2021; 8: 1415-1444
        • Kakati T.
        • Bhattacharyya D.K.
        • Barah P.
        • Kalita J.K.
        Comparison of methods for differential Co-expression analysis for disease biomarker prediction.
        Comput Biol Med. 2019; 113103380
        • Nomiri S.
        • Karami H.
        • Baradaran B.
        • Javadrashid D.
        • Derakhshani A.
        • Nourbakhsh N.S.
        • et al.
        Exploiting systems biology to investigate the gene modules and drugs in ovarian cancer: a hypothesis based on the weighted gene co-expression network analysis.
        Biomed Pharmacother. 2022; 146112537
        • Papatheodoridi A.
        • Papatheodoridis G.
        Hepatocellular carcinoma: the virus or the liver?.
        Liver Int. 2022;
        • Garcia-Lezana T.
        • Lopez-Canovas J.L.
        • Villanueva A.
        Signaling pathways in hepatocellular carcinoma.
        Adv Cancer Res. 2021; 149: 63-101
        • Chen X.
        • Xu R.
        • He D.
        • Zhang Y.
        • Chen H.
        • Zhu Y.
        • et al.
        CD8(+) T effector and immune checkpoint signatures predict prognosis and responsiveness to immunotherapy in bladder cancer.
        Oncogene. 2021; 40: 6223-6234
        • Zhang X.
        • Zhang S.
        • Yan X.
        • Shan Y.
        • Liu L.
        • Zhou J.
        • et al.
        m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of periodontitis.
        J Cell Mol Med. 2021; 25: 3634-3645
        • Wang Z.
        • Yang L.
        • Huang Z.
        • Li X.
        • Xiao J.
        • Qu Y.
        • et al.
        Identification of prognosis biomarkers for high-grade serous ovarian cancer based on stemness.
        Front Genet. 2022; 13861954
        • Liu Z.
        • He J.
        • Han J.
        • Yang J.
        • Liao W.
        • Chen N.
        m6A Regulators mediated methylation modification patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma.
        Front Immunol. 2021; 12762243
        • Shi H.
        • Han L.
        • Zhao J.
        • Wang K.
        • Xu M.
        • Shi J.
        • et al.
        Tumor stemness and immune infiltration synergistically predict response of radiotherapy or immunotherapy and relapse in lung adenocarcinoma.
        Cancer Med. 2021; 10: 8944-8960
        • Chen D.
        • Liu J.
        • Zang L.
        • Xiao T.
        • Zhang X.
        • Li Z.
        • et al.
        Integrated machine learning and bioinformatic analyses constructed a novel stemness-related classifier to predict prognosis and immunotherapy responses for hepatocellular carcinoma patients.
        Int J Biol Sci. 2022; 18: 360-373
        • Mai H.
        • Xie H.
        • Luo M.
        • Hou J.
        • Chen J.
        • Hou J.
        • et al.
        Implications of stemness features in 1059 hepatocellular carcinoma patients from five cohorts: prognosis, treatment response, and identification of potential compounds.
        Cancers (Basel). 2022; 14: 563
        • Deshmukh A.P.
        • Vasaikar S.V.
        • Tomczak K.
        • Tripathi S.
        • den Hollander P.
        • Arslan E.
        • et al.
        Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing.
        Proc Natl Acad Sci U S A. 2021; 118e2102050118
        • Tschernia N.P.
        • Gulley J.L.
        Tumor in the crossfire: inhibiting TGF-β to enhance cancer immunotherapy.
        BioDrugs. 2022; 36: 153-180
        • Marcucci F.
        • Rumio C.
        Tumor cell glycolysis-at the crossroad of epithelial-mesenchymal transition and autophagy.
        Cells. 2022; 11: 1041
        • Herst P.M.
        • Carson G.M.
        • Eccles D.A.
        • Berridge M.V.
        Bioenergetic and metabolic adaptation in tumor progression and metastasis.
        Front Oncol. 2022; 12857686
        • Maddalena M.
        • Mallel G.
        • Nataraj N.B.
        • Shreberk-Shaked M.
        • Hassin O.
        • Mukherjee S.
        • et al.
        TP53 missense mutations in PDAC are associated with enhanced fibrosis and an immunosuppressive microenvironment.
        Proc Natl Acad Sci U S A. 2021; 118e2025631118
        • de Andrade K.C.
        • Khincha P.P.
        • Hatton J.N.
        • Frone M.N.
        • Wegman-Ostrosky T.
        • Mai P.L.
        • et al.
        Cancer incidence, patterns, and genotype-phenotype associations in individuals with pathogenic or likely pathogenic germline TP53 variants: an observational cohort study.
        Lancet Oncol. 2021; 22: 1787-1798
        • Yao Y.
        • Gu X.
        • Xu X.
        • Ge S.
        • Jia R.
        Novel insights into RB1 mutation.
        Cancer Lett. 2022; 547215870
        • Mc Leer A.
        • Foll M.
        • Brevet M.
        • Antoine M.
        • Novello S.
        • Mondet J.
        • et al.
        Detection of acquired TERT amplification in addition to predisposing p53 and Rb pathways alterations in EGFR-mutant lung adenocarcinomas transformed into small-cell lung cancers.
        Lung Cancer. 2022; 167: 98-106
        • Melo C.M.
        • Vidotto T.
        • Chaves L.P.
        • Lautert-Dutra W.
        • Reis R.B.D.
        • Squire J.A.
        The role of somatic mutations on the immune response of the tumor microenvironment in prostate cancer.
        Int J Mol Sci. 2021; 22: 9550
        • Xie Z.
        • Li X.
        • He Y.
        • Wu S.
        • Wang S.
        • Sun J.
        • et al.
        Immune cell confrontation in the papillary thyroid carcinoma microenvironment.
        Front Endocrinol (Lausanne). 2020; 11570604
        • Yang F.
        • Wang J.F.
        • Wang Y.
        • Liu B.
        • Molina J.R.
        Comparative analysis of predictive biomarkers for PD-1/PD-L1 inhibitors in cancers: developments and challenges.
        Cancers (Basel). 2021; 14: 109
        • Rizzo A.
        • Ricci A.D.
        • Di Federico A.
        • Frega G.
        • Palloni A.
        • Tavolari S.
        • et al.
        Predictive biomarkers for checkpoint inhibitor-based immunotherapy in hepatocellular carcinoma: where do we stand?.
        Front Oncol. 2021; 11803133
        • Saleh R.
        • Elkord E.
        Treg-mediated acquired resistance to immune checkpoint inhibitors.
        Cancer Lett. 2019; 457: 168-179
        • Chen Y.
        • Li Z.Y.
        • Zhou G.Q.
        • Sun Y.
        An immune-related gene prognostic index for head and neck squamous cell carcinoma.
        Clin Cancer Res. 2021; 27: 330-341