Advertisement
Research Article| Volume 258, P10-17, November 2021

Download started.

Ok

BRCA1 and BRCA2 whole cDNA analysis in unsolved hereditary breast/ovarian cancer patients

  • Author Footnotes
    1 Present address: CHU de Québec - Université Laval Research Center, Oncology division, 9 Rue McMahon, Québec city G1R 3S3, Québec, Canada.
    Gemma Montalban
    Footnotes
    1 Present address: CHU de Québec - Université Laval Research Center, Oncology division, 9 Rue McMahon, Québec city G1R 3S3, Québec, Canada.
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain
    Search for articles by this author
  • Sandra Bonache
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain
    Search for articles by this author
  • Vanessa Bach
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain
    Search for articles by this author
  • Alexandra Gisbert-Beamud
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain
    Search for articles by this author
  • Anna Tenés
    Affiliations
    Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
    Search for articles by this author
  • Alejandro Moles-Fernández
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain
    Search for articles by this author
  • Adrià López-Fernández
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain
    Search for articles by this author
  • Estela Carrasco
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain
    Search for articles by this author
  • Judith Balmaña
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain

    Medical Oncology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
    Search for articles by this author
  • Orland Diez
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain

    Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
    Search for articles by this author
  • Sara Gutiérrez-Enríquez
    Correspondence
    Corresponding author.
    Affiliations
    Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Office 4.08, Cellex Center, c/ Natzaret, 115-117, 08035 Barcelona, Spain
    Search for articles by this author
  • Author Footnotes
    1 Present address: CHU de Québec - Université Laval Research Center, Oncology division, 9 Rue McMahon, Québec city G1R 3S3, Québec, Canada.

      Highlights

      • Whole BRCA1/2 cDNA screening from a large series of 320 unsolved high-risk breast/ovarian cancer cases.
      • Known BRCA1/2 alternative transcripts were detected, together with two novel transcripts: BRCA1 ▼21 and BRCA2 Δ18q_27p.
      • Retrospective RNA analysis detected BRCA2 exon 3 skipping in one patient caused by the insertion of an Alu element in genomic DNA.
      • We identify a potential sQTL in BRCA2 intron 21 (c.8755-66T>C) that modulates ∆22 isoform levels.
      • Our findings can help clinical laboratories to design new studies to test the yield of RNA-based genetic diagnosis of inherited cancer disorders.

      Abstract

      Germline pathogenic variants in BRCA1 and BRCA2 genes (BRCA1/2) explain an important fraction of hereditary breast/ovarian cancer (HBOC) cases. Genetic testing generally involves examining coding regions and exon/intron boundaries, thus the frequency of deleterious variants in non-coding regions is unknown. Here we analysed BRCA1/2 whole cDNA in a large cohort of 320 unsolved high-risk HBOC cases in order to identify potential splicing alterations explained by variants in BRCA1/2 deep intronic regions. Whole RNA splicing profiles were analysed by RT-PCR using Sanger sequencing or high-resolution electrophoresis in a QIAxcel instrument.
      Known predominant BRCA1/2 alternative splicing events were detected, together with two novel events BRCA1 ▼21 and BRCA2 Δ18q_27p. BRCA2 exon 3 skipping was detected in one patient (male) affected with breast cancer, caused by a known Portuguese founder mutation (c.156_157insAluYa5). An altered BRCA2 splicing pattern was detected in three patients, consisting in the up-regulation of ▼20A, Δ22 and ▼20A+Δ22 transcripts. In silico analysis and semi-quantitative data identified the polymorphism BRCA2 c.8755–66T>C as a potential modifier of Δ22 levels.
      Our findings suggest that mRNA alterations in BRCA1/2 caused by deep intronic variants are rare in Spanish population. However, RNA analysis complements DNA-based strategies allowing the identification of alterations that could go undetected by conventional testing.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Couch F.J.
        • Nathanson K.L.
        • Offit K.
        Two decades after BRCA: setting paradigms in personalized cancer care and prevention.
        Science. 2014; 343: 1466-1470https://doi.org/10.1126/science.1251827
        • Turnbull C.
        • Rahman N.
        Genetic predisposition to breast cancer: past, present, and future.
        Annu Rev Genom Hum Genet. 2008; 9: 321-345https://doi.org/10.1146/annurev.genom.9.081307.164339
        • George A.
        • Kaye S.
        • Banerjee S.
        Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer.
        Nat Rev Clin Oncol. 2017; 14: 284-296https://doi.org/10.1038/nrclinonc.2016.191
        • Toland A.E.
        • Forman A.
        • Couch F.J.
        • Culver J.O.
        • Eccles D.M.
        • Foulkes W.D.
        • et al.
        Clinical testing of BRCA1 and BRCA2: a worldwide snapshot of technological practices.
        Npj Genom Med. 2018; 3: 7https://doi.org/10.1038/s41525-018-0046-7
        • Anczuków O.
        • Buisson M.
        • Léoné M.
        • Coutanson C.
        • Lasset C.
        • Calender A.
        • et al.
        BRCA2 deep intronic mutation causing activation of a cryptic exon: opening toward a new preventive therapeutic strategy.
        Clin Cancer Res. 2012; 18: 4903-4909https://doi.org/10.1158/1078-0432.CCR-12-1100
        • Gambino G.
        • Tancredi M.
        • Falaschi E.
        • Aretini P.
        • Caligo M.A.
        Characterization of three alternative transcripts of the BRCA1 gene in patients with breast cancer and a family history of breast and/or ovarian cancer who tested negative for pathogenic mutations.
        Int J Mol Med. 2015; 35: 950-956https://doi.org/10.3892/ijmm.2015.2103
        • Byers H.
        • Wallis Y.
        • Van Veen E.M.
        • Lalloo F.
        • Reay K.
        • Smith P.
        • et al.
        Sensitivity of BRCA1/2 testing in high-risk breast/ovarian/male breast cancer families: little contribution of comprehensive RNA/NGS panel testing.
        Eur J Hum Genet. 2016; 24: 1591-1597https://doi.org/10.1038/ejhg.2016.57
        • Landrith T.
        • Li B.
        • Cass A.A.
        • Conner B.R.
        • Laduca H.
        • Mckenna D.B.
        • et al.
        Splicing profile by capture RNA-seq identifies pathogenic germline variants in tumor suppressor genes.
        Npj Precis Oncol. 2020; https://doi.org/10.1038/s41698-020-0109-y
        • Montalban G.
        • Bonache S.
        • Moles-Fernández A.
        • Gisbert-Beamud A.
        • Tenés A.
        • Bach V.
        • et al.
        Screening of BRCA1/2 deep intronic regions by targeted gene sequencing identifies the first germline BRCA1 variant causing pseudoexon activation in a patient with breast/ovarian cancer.
        J Med Genet. 2019; 56https://doi.org/10.1136/jmedgenet-2018-105606
        • Desmet F.O.
        • Hamroun D.
        • Lalande M.
        • Collod-Bëroud G.
        • Claustres M.
        • Béroud C.
        Human splicing finder: an online bioinformatics tool to predict splicing signals.
        Nucleic Acids Res. 2009; 37 (e67–e67)https://doi.org/10.1093/nar/gkp215
        • Lattimore V.L.
        • Pearson J.F.
        • Currie M.J.
        • Spurdle A.B.
        • kConFab Investigators B.A.
        • Robinson B.A.
        • et al.
        Investigation of experimental factors that underlie BRCA1/2 mRNA isoform expression variation: recommendations for utilizing targeted RNA sequencing to evaluate potential spliceogenic variants.
        Front Oncol. 2018; 8: 140https://doi.org/10.3389/fonc.2018.00140
        • Davy G.
        • Rousselin A.
        • Goardon N.
        • Castéra L.
        • Harter V.
        • Legros A.
        • et al.
        Detecting splicing patterns in genes involved in hereditary breast and ovarian cancer.
        Eur J Hum Genet. 2017; 25: 1147-1154https://doi.org/10.1038/ejhg.2017.116
        • Fackenthal J.D.
        • Yoshimatsu T.
        • Zhang B.
        • de Garibay G.R.
        • Colombo M.
        • De Vecchi G.
        • et al.
        Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples.
        J Med Genet. 2016; 53: 548-558https://doi.org/10.1136/jmedgenet-2015-103570
        • Colombo M.
        • Blok M.J.
        • Whiley P.
        • Santamariña M.
        • Gutiérrez-Enríquez S.
        • Romero A.
        • et al.
        Comprehensive annotation of splice junctions supports pervasive alternative splicing at the BRCA1 locus: a report from the ENIGMA consortium.
        Hum Mol Genet. 2014; 23: 3666-3680https://doi.org/10.1093/hmg/ddu075
        • Peixoto A.
        • Santos C.
        • Rocha P.
        • Pinheiro M.
        • Príncipe S.
        • Pereira D.
        • et al.
        The c.156_157insAlu BRCA2 rearrangement accounts for more than one-fourth of deleterious BRCA mutations in northern/central Portugal.
        Breast Cancer Res Treat. 2009; 114: 31-38https://doi.org/10.1007/s10549-008-9978-4
        • Caputo S.M.
        • Léone M.
        • Damiola F.
        • Ehlen A.
        • Carreira A.
        • Gaidrat P.
        • et al.
        Full in-frame exon 3 skipping of BRCA2 confers high risk of breast and/or ovarian cancer.
        Oncotarget. 2018; 9: 17334-17348https://doi.org/10.18632/oncotarget.24671
        • Muller D.
        • Rouleau E.
        • Schultz I.
        • Caputo S.
        • Lefol C.
        • Bièche I.
        • et al.
        An entire exon 3 germ-line rearrangement in the BRCA2 gene: pathogenic relevance of exon 3 deletion in breast cancer predisposition.
        BMC Med Genet. 2011; 12: 1-12https://doi.org/10.1186/1471-2350-12-121
        • Mesman R.L.S.
        • Calléja F.M.G.R.
        • Hendriks G.
        • Morolli B.
        • Misovic B.
        • Devilee P.
        • et al.
        The functional impact of variants of uncertain significance in BRCA2.
        Genet Med. 2019; 21: 293-302https://doi.org/10.1038/s41436-018-0052-2
        • de Jong L.C.
        • Cree S.
        • Lattimore V.
        • Wiggins G.A.R.
        • Spurdle A.B.
        • Miller A.
        • et al.
        Nanopore sequencing of full-length BRCA1 mRNA transcripts reveals co-occurrence of known exon skipping events.
        Breast Cancer Res. 2017; 19https://doi.org/10.1186/s13058-017-0919-1
        • Speevak M.D.
        • Young S.S.
        • Feilotter H.
        • Ainsworth P.
        Alternatively spliced, truncated human BRCA2 isoforms contain a novel coding exon.
        Eur J Hum Genet. 2003; 11: 951-954https://doi.org/10.1038/sj.ejhg.5201063
        • Whiley P.J.
        • De La Hoya M.
        • Thomassen M.
        • Becker A.
        • Brandão R.
        • Pedersen I.S.
        • et al.
        Comparison of mRNA splicing assay protocols across multiple laboratories: recommendations for best practice in standardized clinical testing.
        Clin Chem. 2014; 60: 341-352https://doi.org/10.1373/clinchem.2013.210658
        • de Garibay G.R.
        • Acedo A.
        • García-Casado Z.
        • Gutiérrez-Enríquez S.
        • Tosar A.
        • Romero A.
        • et al.
        Capillary electrophoresis analysis of conventional splicing assays: IARC analytical and clinical classification of 31 BRCA2 genetic variants.
        Hum Mutat. 2014; 35: 53-57https://doi.org/10.1002/humu.22456
        • Montalban G.
        • Fraile-Bethencourt E.
        • López-Perolio I.
        • Pérez-Segura P.
        • Infante M.
        • Durán M.
        • et al.
        Characterization of spliceogenic variants located in regions linked to high levels of alternative splicing: BRCA2 c.7976+5G>T as a case study.
        Hum Mutat. 2018; 39: 1155-1160https://doi.org/10.1002/humu.23583
        • Montalban G.
        • Bonache S.
        • Moles-Fernández A.
        • Gadea N.
        • Tenés A.
        • Torres-Esquius S.
        • et al.
        Incorporation of semi-quantitative analysis of splicing alterations for the clinical interpretation of variants in BRCA1 and BRCA2 genes.
        Hum Mutat. 2019; 40https://doi.org/10.1002/humu.23882
        • Jie S.
        • Medico L.
        • Zhao H.
        Allelic imbalance in BRCA1 and BRCA2 gene expression and familial ovarian cancer.
        Cancer Epidemiol Biomark Prev. 2011; 20: 50-56https://doi.org/10.1158/1055-9965.EPI-10-0720
        • dos Santos E.S.
        • Lallemand F.
        • Burke L.
        • Stoppa-Lyonnet D.
        • Brown M.
        • Caputo S.M.
        • et al.
        Non-coding variants in BRCA1 and BRCA2 genes: potential impact on breast and ovarian cancer predisposition.
        Cancers (Basel). 2018; 10: 453https://doi.org/10.3390/cancers10110453
        • Evans D.G.R.
        • van Veen E.M.
        • Byers H.J.
        • Wallace A.J.
        • Ellingford J.M.
        • Beaman G.
        • et al.
        A dominantly inherited 5′ UTR variant causing methylation-associated silencing of BRCA1 as a cause of breast and ovarian cancer.
        Am J Hum Genet. 2018; 103: 213-220https://doi.org/10.1016/j.ajhg.2018.07.002
        • Brandão R.D.
        • Mensaert K.
        • López-Perolio I.
        • Tserpelis D.
        • Xenakis M.
        • Lattimore V.
        • et al.
        Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes.
        Int J Cancer. 2019; 145: 401-414https://doi.org/10.1002/ijc.32114
        • Kremer L.S.
        • Bader D.M.
        • Mertes C.
        • Kopajtich R.
        • Pichler G.
        • Iuso A.
        • et al.
        Genetic diagnosis of Mendelian disorders via RNA sequencing.
        Nat Commun. 2017; 8https://doi.org/10.1038/ncomms15824
        • Cummings B.B.
        • Marshall J.L.
        • Tukiainen T.
        • Lek M.
        • Donkervoort S.
        • Foley A.R.
        • et al.
        Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.
        Sci Transl Med. 2017; 9https://doi.org/10.1126/scitranslmed.aal5209
        • Frésard L.
        • Smail C.
        • Ferraro N.M.
        • Teran N.A.
        • Li X.
        • Smith K.S.
        • et al.
        Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts.
        Nat Med. 2019; 25: 911-919https://doi.org/10.1038/s41591-019-0457-8
        • Gonorazky H.
        • Liang M.
        • Cummings B.
        • Lek M.
        • Micallef J.
        • Hawkins C.
        • et al.
        RNAseq analysis for the diagnosis of muscular dystrophy.
        Ann Clin Transl Neurol. 2016; 3: 55-60https://doi.org/10.1002/acn3.267
        • Lee H.
        • Huang A.Y.
        • kai Wang L
        • Yoon A.J.
        • Renteria G.
        • Eskin A.
        • et al.
        Diagnostic utility of transcriptome sequencing for rare Mendelian diseases.
        Genet Med. 2020; 22: 490-499https://doi.org/10.1038/s41436-019-0672-1
        • Murdock D.R.
        • Dai H.
        • Burrage L.C.
        • Rosenfeld J.A.
        • Ketkar S.
        • Müller M.F.
        • et al.
        Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing.
        J Clin Invest. 2021; 131https://doi.org/10.1172/JCI141500
        • Mertes C.
        • Scheller I.F.
        • Yépez V.A.
        • Çelik M.H.
        • Liang Y.
        • Kremer L.S.
        • et al.
        Detection of aberrant splicing events in RNA-seq data using FRASER.
        Nat Commun. 2021; 12: 1-13https://doi.org/10.1038/s41467-020-20573-7