Advertisement

A novel heptasomy 21 associated with complete loss of heterozygosity and loss of function RUNX1 mutation in acute myeloid leukemia

  • Fei Yang
    Affiliations
    Department of Pathology, Oregon Health & Sciences University, Portland, OR, United States

    Knight Diagnostic Laboratories, Oregon Health & Sciences University, Portland, OR, United States
    Search for articles by this author
  • Yassmine Akkari
    Affiliations
    Legacy Laboratory Services, Legacy Health, Portland, OR, United States
    Search for articles by this author
  • Guang Fan
    Affiliations
    Department of Pathology, Oregon Health & Sciences University, Portland, OR, United States
    Search for articles by this author
  • Susan Olson
    Affiliations
    Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, United States

    Knight Diagnostic Laboratories, Oregon Health & Sciences University, Portland, OR, United States
    Search for articles by this author
  • Stephen Moore
    Correspondence
    Corresponding author: Oregon Health & Science University, OR, United States.
    Affiliations
    Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, United States

    Knight Diagnostic Laboratories, Oregon Health & Sciences University, Portland, OR, United States
    Search for articles by this author

      Highlights

      • A novel karyotype of heptasomy 21 in an AML patient with complex karyotype.
      • Comprehensive genomic/genetic evaluation revealed several biomarkers with therapeutic implications.
      • Micronucleus formation may underlie the polysomy 21.

      Abstract

      Chromosomal aberrations are among the most important prognostic parameters in AML, and conventional cytogenetic analysis remains essential for risk stratification. In this report, we describe an adult male patient with a high percentage of circulating blasts, pathologically confirmed as AML with maturation. Cytogenetic analysis of a bone marrow sample revealed heptasomy 21 and trisomy 13 within a complex karyotype of 52,XY,der(2)t(2;13)(q33.3;q32.1),+13,+21,+21,+21,+21,+21 in all 20 cells examined, which was confirmed by metaphase FISH. Chromosomal microarray analysis (CMA) revealed complete loss of heterozygosity (LOH) of chromosome 21, supporting a common origin. In addition, LOH of chromosome 1p, trisomy 13, and partial tetrasomy of 13q and partial monosomy of 2q as a result of an unbalanced translocation between chromosomes 2 and 13 were observed. Molecular analysis identified two pathogenic missense variants: RUNX1 p.D198Y and SRSF2 p.P95R. The clonal allele ratio of RUNX1 p.D198Y was consistent with all copies of chromosome 21 in the leukemic clone carrying the mutation. Within the medical literature, there are no reports of heptasomy 21 for comparison; however, there are reports of AML with either polysomy 21 or trisomy 13. Our results suggest that even relatively ‘common’ AML aneuploidies may be associated with much more complex genomic changes, including loss of heterozygosity, which impact prognosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Döhner H.
        • Estey E.
        • Grimwade D.
        • Amadori S.
        • Appelbaum F.R.
        • Büchner T.
        • Dombret H.
        • Ebert B.L.
        • Fenaux P.
        • Larson R.A.
        • Levine R.L.
        • Lo-Coco F.
        • Naoe T.
        • Niederwieser D.
        • Ossenkoppele G.J.
        • Sanz M.
        • Sierra J.
        • Tallman M.S.
        • Tien H.F.
        • Wei A.H.
        • Löwenberg B.
        • Bloomfield CD.
        Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.
        Blood. 2017; 129 (Epub 2016 Nov 28PMID: 27895058): 424-447https://doi.org/10.1182/blood-2016-08-733196
        • Bacher U.
        • Kern W.
        • Schnittger S.
        • Hiddemann W.
        • Schoch C.
        • Haferlach T.
        Further correlations of morphology according to FAB and WHO classificationto cytogenetics in de novo acute myeloid leukemia: a study on 2,235 patients.
        Ann Hematol. 2005; 84: 785-791
        • Mesa R.A.
        • Hanson C.A.
        • Ketterling R.P.
        • Schwager S.
        • Knudson R.A.
        • Trisomy T.A.
        13: prevalence and clinicopathologic correlates of another potentially lenalidomide-sensitive cytogenetic abnormality.
        Blood. 2009; 113: 1200-1201
        • Cortes J.E.
        • Kantarjian H.
        • O'Brien S.
        • Keating M.
        • Pierce S.
        • Freireich E.J.
        • Estey E.
        Clinical and prognostic significance of trisomy 21 in adult patients with acute myelogenous leukemia and myelodysplastic syndromes.
        Leukemia. 1995; 9: 115-117
        • Herold T.
        • Metzeler K.H.
        • Vosbery S.
        • Hartmann L.
        • Rollig C.
        • Stolzel F.
        • Schneider S.
        • Hubmann M.
        • Zellmeier E.
        • Ksienzyk B.
        • Jurinovic V.
        • Pasalic Z.
        • Kakadia P.M.
        • Dufour A.
        • Graf A.
        • Kerbs S.
        • Blum H.
        • Sauerland M.C.
        • Buchner T.
        • Berder W.E.
        • Woermann B.J.
        • Bornhauser M.
        • Ehninger G.
        • Mansmann U.
        • Hiddemann W.
        • Bohlander S.K.
        • Spiekermann K.
        • Greif P.A.
        Isolated trisomy 13 defines a genetically homogenous AML subgroup with high frequency of mutations in spliceosome genes and poor prognosis.
        Blood. 2014; 124: 1304-1311
        • Santana-Davila R.
        • Ellliott M.
        • Hook C.
        • Kaufmann S.
        • Letendre L.
        • Pruthi R.
        • Tefferi A.
        • Kyke D.V.
        • Wiktor A.
        • Litzow M.R.
        Trisomy 13 in patients with hematological malignancies.
        J Clin Oncol. 2007; 25 (18S): 7055
        • Cortes J.E.
        • Kantarjian H.
        • O'Brien S.
        • Keating M.
        • Pierce S.
        • Freireich E.J.
        • Estey E.
        Clinical and prognostic significance of trisomy 21 in adult patients with acute myelogenous leukemia and myelodysplastic syndromes.
        Leukemia. 1995; 9: 115-117
        • Ohsaka A.
        • Hisa T.
        • Watanabe N.
        • Kojima H.
        • Nagasawa T.
        Tetrasomy 21 as a sole chromosome abnormality in acute myeloid leukemia: fluorescence in situ hybridization and spectral karyotyping analyses.
        Cancer Genet Cytogenet. 2002; 134: 60-64
        • Park Y.C.
        • Lim J.
        • Ko Y.H.
        • Kim J.
        • Kwon G.C.
        A case of pentasomy 21 with two isochromosome 21s in acute megakaryoblastic leukemia associated with Down syndrome.
        Ann Lab Med. 2015; 35: 373-375
        • Shimoyama M.
        • Yamamoto K.
        • Nishikawa S.
        • Minagawa K.
        • Katayama Y.
        • Matsui T.
        Duplication of isodicentric chromosome 21, idic(21)(p11.2), leading to pentasomy 21q in acute myeloid leukemia with multilineage dysplasia.
        Cancer Genet Cytogenet. 2009; 194: 38-43
        • Shiraishi Y.
        • Taguchi H.
        • Niiya K.
        • Shiomi F.
        • Kikukawa K.
        • Kubonishi S.
        • Ohmura T.
        • Hamawaki M.
        • Ueda N.
        Diagnostic and prognostic significance of chromosome abnormalities in marrow and mitogen response of lymphocytes of acute nonlymphocytic leukemia.
        Cancer Genet Cytogenet. 1982; 5: 1-24
        • Moorman A.V.
        • Richards S.M.
        • Robinson H.M.
        • Strefford J.C.
        • Gibson B.E.
        • Kinsey S.E.
        • Eden T.O.
        • Vora A.J.
        • Mitchell C.D.
        • Harrison C.J.
        UK Medical Research Council (MRC)/National Cancer Research Institute (NCRI) Childhood Leukaemia Working Party (CLWP).
        Blood. 2007; 109 (Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21)): 2327-2330
        • Reinig E.
        • Yang F.
        • Traer E.
        • Arora R.
        • Brown S.
        • Rattray R.
        • Braziel R.
        • Fan G.
        • Press R.
        • Dunlap J.
        Targeted Next-Generation Sequencing in Myelodysplastic Syndrome and Chronic Myelomonocytic Leukemia Aids Diagnosis in Challenging Cases and Identifies Frequent Spliceosome Mutations in Transformed Acute Myeloid Leukemia.
        Am J Clin Pathol. 2016; 145 (Epub 2016 Apr 22): 497-506https://doi.org/10.1093/ajcp/aqw016
        • Okada Y.
        • Watanabe M.
        • Nakai T.
        • Kamikawa Y.
        • Shimizu M.
        • Fukuhara Y.
        • Yonekura M.
        • Matsuura E.
        • Hoshika Y.
        • Nagai R.
        • Aird W.C.
        • Doi T.
        RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins.
        J Thrombosis Haemostasis. 2013; 11: 1742-1750
        • Zhang J.
        • Lieu Y.K.
        • Ali A.M.
        • Penson A.
        • Reggio K.S.
        • Rabadan R.
        • Raza A.
        • Mukherjee S.
        • Manley J.L.
        Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities.
        Proc Natl Acad Sci U S A. 2015; 112 (Epub 2015 Aug 10): E4726-E4734https://doi.org/10.1073/pnas.1514105112
        • Thomay K.
        • Behrens Y.L.
        • Lentes J.
        • Wittner N.
        • Wittig V.
        • Rothe D.
        • Steinemann D.
        • Schlegelberger B.
        • Göhring G.
        Octasomy 21 in a patient with secondary AML after CMML: the role of acquired NRAS mutations in triggering aneuploidy.
        Leuk Lymphoma. 2018; 59: 2478-2481
        • Mikhail F.M.
        • Sinha K.K.
        • Saunthararajah Y.
        • Nucifora G.
        Normal and transforming functions of RUNX1: a perspective.
        J Cell Physiol. 2006; 207: 582-593
        • Roumier C.
        • Fenaux P.
        • Lafage M.
        • Imbert M.
        • Eclache V.
        • Preudhomme C.
        New mechanisms of AML1 gene alteration in hematological malignancies.
        Leukemia. 2003; 17: 9-16
        • Preudhomme C.
        • Warot-Loze D.
        • Roumier C.
        • Grardel-Duflos N.
        • Garand R.
        • Lai J.L.
        • Dastugue N.
        • Macintyre E.
        • Denis C.
        • Bauters F.
        • Kerckaert J.P.
        • Cosson A.
        • Fenaux P.
        High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2aB gene in M0 acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21.
        Blood. 2000; 96: 2862-2869
        • Schnittger S.
        • Dicker F.
        • Kern W.
        • Wendland N.
        • Sundermann J.
        • Alpermann T.
        • Haferlach C.
        • Haferlach T.
        RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis.
        Blood. 2011; 117: 2348-2357
        • Gaidzik V.I.
        • Bullinger L.
        • Schlenk R.F.
        • Zimmermann A.S.
        • Röck J.
        • Paschka P.
        • Corbacioglu A.
        • Krauter J.
        • Schlegelberger B.
        • Ganser A.
        • Späth D.
        • Kündgen A.
        • Schmidt-Wolf I.G.
        • Götze K.
        • Nachbaur D.
        • Pfreundschuh M.
        • Horst H.A.
        • Döhner H.
        • Döhner K.
        RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group.
        J Clin Oncol. 2011; 29: 1364-1372
        • Tiu R.V.
        • Gondek L.P.
        • O'Keefe C.L.
        • Huh J.
        • Sekeres M.A.
        • Elson P.
        • McDevitt M.A.
        • Wang X.F.
        • Levis M.J.
        • Karp J.E.
        • Advani A.S.
        • Maciejewski J.P.
        New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia.
        J Clin Oncol. 2009; 27: 5219-5226
        • Gupta M.
        • Raghavan M.
        • Gale R.E.
        • Chelala C.
        • Allen C.
        • Molloy G.
        • Chaplin T.
        • Linch D.C.
        • Cazier J.B.
        • Young B.D.
        Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia.
        Genes, Chromosomes Cancer. 2008; 47: 729-739
        • Xu X.
        • Bryke C.
        • Sukhanova M.
        • Huxley E.
        • Dash D.P.
        • Dixon-Mciver A.
        • Fang M.
        • Griepp P.T.
        • Hodge J.C.
        • Iqbal A.
        • Jeffries S.
        • Kanagal-Shamanna R.
        • Quintero-Rivera F.
        • Shetty S.
        • Slovak M.L.
        • Yenamandra A.
        • Lennon P.A.
        • Raca G.
        Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: an evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group.
        Cancer Genet. 2018; 228 (-229Epub 2018 Oct 6): 218-235https://doi.org/10.1016/j.cancergen.2018.07.005
        • Mori N.
        • Morosetti R.
        • Mizoguchi H.
        • Koeffler H.P.
        Progression of myelodysplastic syndrome: allelic loss on chromosomal arm 1p.
        Br. J. Haematol. 2013; 122: 226-230
        • Mori N.1.
        • Yoshinaga K.
        • Tomita K.
        • Ohwashi M.
        • Kondoh T.
        • Shimura H.
        • Wang Y.H.
        • Shiseki M.
        • Okada M.
        • Motoji T.
        Aberrant methylation of the RIZ1 gene in myelodysplastic syndrome and acute myeloid leukemia.
        Leukemia Res. 2011; 35: 516-521
        • Lindsley R.C.
        • Mar B.G.
        • Mazzola E.
        • Grauman P.V.
        • Shareef S.
        • Allen S.L.
        • Pigneux A.
        • Wetzler M.
        • Stuart R.K.
        • Erba H.P.
        • Damon L.E.
        • Powell B.L.
        • Lindeman N.
        • Steensma D.P.
        • Wadleigh M.
        • DeAngelo D.J.
        • Neuberg D.
        • Stone R.M.
        • Ebert B.L.
        Acute myeloid leukemia ontogeny is defined by distinct somatic mutations.
        Blood. 2015; 125 (Epub 2014 Dec 30PMID: 25550361): 1367-1376https://doi.org/10.1182/blood-2014-11-610543
        • Maakaron J.E.
        • Mims A.S.
        Daunorubicin-cytarabine liposome (CPX-351) in the management of newly diagnosed secondary AML: a new twist on an old cocktail.
        Best Pract Res Clin Haematol. 2019; 32 (Epub 2019 May 13): 127-133https://doi.org/10.1016/j.beha.2019.05.005
        • Brunner A.M.
        • Steensma D.P.
        Targeting aberrant splicing in myelodysplastic syndromes: biologic rationale and clinical opportunity.
        Hematol Oncol Clin North Am. 2020; 34 (Epub 2019 Dec 11): 379-391https://doi.org/10.1016/j.hoc.2019.10.003
        • Leach N.T.
        • Jackson-Cook C.
        Micronuclei with multiple copies of the X chromosome: do chromosomes replicate in micronuclei?.
        Mutat Res. 2004; 554 (-2PMID: 15450407): 89-94https://doi.org/10.1016/j.mrfmmm.2004.03.004